Skip to main content Accessibility help
×
Home

Formation Mechanism of Conducting Path in Resistive Random Access Memory by First Principles Calculation Using Practical Model Based on Experimental Results

  • Takumi Moriyama (a1) (a2), Takahiro Yamasaki (a3), Takahisa Ohno (a3) (a4), Satoru Kishida (a1) (a2) and Kentaro Kinoshita (a1) (a2)...

Abstract

For practical use of Resistive Random Access Memory (ReRAM), understanding resistive switching mechanism in transition metal oxides (TMO) is important. Some papers predict its mechanism by using first principles calculation; for example, TMO become conductive by introducing oxygen vacancy in bulk single crystalline TMO. However, most of ReRAM samples have polycrystalline structures. In this paper, we introduced a periodic slab model to depict grain boundary and calculated the surface energy and density of states for surfaces of NiO with various orientations using first-principles calculation to consider the effect of grain boundaries for resistive switching mechanisms of ReRAM. As a results, vacancies can be formed on the side surface of grain more easily than in grain. Moreover, we showed that surface conductivity depends on surface orientation of NiO and the orientation of side surface of grain can change easily by introduction of vacancies, which is the switching mechanism of NiO-ReRAM

Copyright

Corresponding author

References

Hide All
1. Gibbons, J. F. and Beadle, W. E., Solid-State Electronics 1964, 7, 785797.
2. Choi, B. J., Jeong, D. S. and Kim, S. K., Journal of Applied Physics 2005, 98, 033715.
3. Lee, H. Y., Chen, Y. S., Chen, P. S., Gu, P. Y., Hsu, Y. Y., Wang, S. M., Liu, W. H., Tsai, C. H., Sheu, S. S., Chiang, P. C., Lin, W. P., Lin, C. H., Chen, W. S., Chen, F. T., Lien, C. H., Tsai, M. J., Tech. Dig. Int. Electron Devices Meeting 2010, 436439.
4. Wei, Z., Takagi, T., Kanzawa, Y., Katoh, Y., Ninomiya, T., Kawai, K., Muraoka, S., Mitani, S., Katayama, K., Fujii, S., Miyanaga, R., Kawashima, Y., Mikawa, T., Shimakawa, K. and Aono, K., IEDM Tech. Dig. 2011, p. 31.4.1.
5. Lee, H. D., Magyari-Kope, B. and Nishi, Y., Phys. Rev. B 81, 193202 (2010).
7. Perdew, J. P., Burke, K. and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).
8. Noguchi, Y., Uchino, M., Hikosaka, H., Atou, T., Kusaba, K., Fukuoka, K., Mashimo, T. and Syono, Y., J. Phys. Chem. Solids 60, 509 (1999).
9. Rohrbach, A., Hafner, J. and Kresse, G., Phys. Rev. B 69, 075413 (2004).
10. Sawatzky, G. A. and Allen, J. W., Phys. Rev. Lett. 53, 2339 (1984).

Keywords

Formation Mechanism of Conducting Path in Resistive Random Access Memory by First Principles Calculation Using Practical Model Based on Experimental Results

  • Takumi Moriyama (a1) (a2), Takahiro Yamasaki (a3), Takahisa Ohno (a3) (a4), Satoru Kishida (a1) (a2) and Kentaro Kinoshita (a1) (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed