Skip to main content Accessibility help
×
Home

Far-infrared bands in plasmonic metal-insulator-metal absorbers optimized for long-wave infrared

  • Rachel N. Evans (a1), Seth R. Calhoun (a1), Jonathan R. Brescia (a1), Justin W. Cleary (a2), Evan M. Smith (a2) (a3) and Robert E. Peale (a1)...

Abstract

Metal–insulator–metal (MIM) resonant absorbers comprise a conducting ground plane, a dielectric of thickness t, and thin separated metal top-surface structures of dimension l. The fundamental resonance wavelength is predicted by an analytic standing-wave model based on t, l, and the dielectric refractive index spectrum. For the dielectrics SiO2, AlN, and TiO2, values for l of a few microns give fundamental resonances in the 8-12 μm long-wave infrared (LWIR) wavelength region. Agreement with theory is better for t/l exceeding 0.1. Harmonics at shorter wavelengths were already known, but we show that there are additional resonances in the far-infrared 20 - 50 μm wavelength range in MIM structures designed to have LWIR fundamental resonances. These new resonances are consistent with the model if far-IR dispersion features in the index spectrum are considered. LWIR fundamental absorptions are experimentally shown to be optimized for a ratio t/l of 0.1 to 0.3 for SiO2- and AlN-based MIM absorbers, respectively, with TiO2-based MIM optimized at an intermediate ratio.

Copyright

Corresponding author

References

Hide All
1.Smith, E. M., Nath, J., Ginn, J., Peale, R. E., and Shelton, D.: Responsivity improvements for a vanadium oxide microbolometer using subwavelength resonant absorbers. Proc. SPIE 9819, 98191Q (2016).
2.Gokhale, V. J., Myers, P. D., and Rais-Zadeh, M.: Subwavelength plasmonic absorbers for spectrally selective resonant infrared detectors. Proc. IEEE Sensors Conf. Valencia, Spain (2-5 Nov. 2014). DOI: 10.1109/ICSENS.2014.6985167
3.Nath, J., Modak, S., Rezadad, I., Panjwani, D., Rezaie, F., Cleary, J. W., and Peale, R. E.: Far-infrared absorber based on standing-wave resonances in metal-dielectric-metal cavity. Opt. Express 23, 20366 (2015).
4.Calhoun, S. R., Lowry, V. C., Stack, R., Evans, R. N., Brescia, J. R., Fredricksen, C. J., Nath, J., and Peale, R. E.: Effect of dispersion on metal-insulator-metal infrared absorption resonances. MRS. Comm. 8, 830 (2018).
5.Nath, J., Maukonen, D., Smith, E., Figueiredo, P., Zummo, G., Panjwani, D., Peale, R. E., Boreman, G., Cleary, J. W., and Eyink, K.: Thin-film, wide-angle, design-tunable, selective absorber from near UV to far infrared. Proc. SPIE 8704, 8041D (2013).
6.Kischkat, J., Peters, S., Gruska, B., Semtsiv, M., Chashnikova, M., Klinkmüller, M., Fedosenko, O., Machulik, S., Aleksandrova, A., Monastyrskyi, G., Flores, Y., and Masselink, W. T.: Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride. Appl. Opt. 51, 6789 (2012).
7.Popova, S., Tolstykh, T., and Vorobev, V.: Optical characteristics of amorphous quartz in the 1400–200 cm-1 region. Opt. Spectrosc. 33, 444 (1972).
8.Kitamura, R., Pilon, L., and Jonasz, M.: Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature. Appl. Opt. 33, 8118 (2007).
9.Refractiveindex.info. (accessed on Nov. 15, 2018).
10.Palik, E. D.: Handbook of Optical Constants of Solids, (Academic 1997) pp. 394-396.
11.Park, J., Kang, J-H., Liu, X. and Brongersma, M. L.: Electrically Tunable Epsilon-Near-Zero (ENZ) Metafilm Absorbers. Scientific Reports 5, 15754 (2015).
12.Adams, M. J.: An Introduction to Optical Waveguides, (Wiley 1981) p. 68.
13.Ye, Y., Jin, Y., and He, S.: Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime. JOSA B 27, 498 (2010).
14.Nath, J., Panjwani, D., K.- Rezaie, F., Yesiltas, M., Smith, E. M., Ginn, J. C., Shelton, D. J., Hirschmugl, C., Cleary, J. W., Peale, R. E.: Infra-red spectral microscopy of standing-wave resonances in single metal-dielectric-metal thin-film cavity. Proc. SPIE 9544, 95442M (2015).
15.Lefebvre, A., Costantini, D., Doyen, I., Lévesque, Q., Lorent, E., Jacolin, D., Greffet, J-J., Boutami, S., and Benisty, H.: CMOS compatible metal-insulator-metal plasmonic perfect absorbers. Optical Materials Express 6, 2389 (2016).

Keywords

Related content

Powered by UNSILO

Far-infrared bands in plasmonic metal-insulator-metal absorbers optimized for long-wave infrared

  • Rachel N. Evans (a1), Seth R. Calhoun (a1), Jonathan R. Brescia (a1), Justin W. Cleary (a2), Evan M. Smith (a2) (a3) and Robert E. Peale (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.