Skip to main content Accessibility help
×
Home

Facile Hydrothermal Synthesis of Molybdenum Disulfide (MoS2) as Advanced Electrodes for Super Capacitors Applications

  • H. Adhikari (a1), C. Ranaweera (a2), R. Gupta (a2) and S. R. Mishra (a1)

Abstract

A facile hydrothermal method was used to synthesize molybdenum disulfide (MoS2) microspheres. The effect of hydrothermal reaction time on morphology and electrochemical properties of MoS2 microspheres was evaluated. X-ray diffraction showed presence of crystalline MoS2 structure, where content of crystalline phase was observed to increase with hydrothermal reaction time. Electrochemical properties of MoS2 were evaluated using cyclic voltammetry (CV) and galvanostatic charge-discharge in 3M KOH solution. Specific capacitance of nanostructured MoS2 was observed to be between 68 F/g and 346 F/g at different scan rates along with excellent cyclic stability. High power density (∼1200 W/kg) and energy density (∼5 Wh/kg) was observed for MoS2 sample synthesized for 24 hours of hydrothermal reaction time. Overall optimal electrocapactive performance was observed for sample prepared for 24 hours of reaction time. It is demonstrated that the obtained MoS2 microspheres with three-dimensional architecture has excellent electrochemical performances as electrode materials for supercapacitor applications.

Copyright

Corresponding author

References

Hide All
1. Conway, B. E., Electrochemical Supercapacitors, Vol. 1, Kluwer Academic/Plenum Publishers, New York, (1999).
2. Fan, L. Q., Liu, G. J., Zhang, C. Y., Wu, J. H., and Wei, Y. L., Int J Hydrogen Energy, 40, 10150 (2015).
3. Ratha, S. and Rout, C. S., ACS Appl. Mater. Interfaces, 5, 11427 (2013).
4. Huang, K. J., Zhang, J. Z., Shi, G. W., and Liu, Y. M., Electrochim. Acta, 132, 397 (2014).
5. Feng, J., Sun, X., Wu, C. Z., Peng, L. L., Lin, C. W., Hu, S. L., Yang, J. L., and Xie, Y., J. Am. Chem. Soc. 133, 17832 (2011).
6. Lembke, D., Bertolazzi, S., and Kis, A., Acc. Chem. Res. 48, 100 (2015).
7. Deng, Z. H., Li, L., Ding, W., Xiong, K., and Wei, Z. D.,Chem. Commun. 51, 1893 (2015).
8. Yue, G., Wu, J., Xiao, Y., Huang, M., Lina, J., and Lin, J. Y., J. Mater. Chem. A, 1, 1495 (2013).
9. Li, W., Yang, Y., Zhang, G., and Zhang, Y. W., Nano Lett. 15, 1691 (2015).
10. Chhowalla, M., Shin, H. S., Eda, G., Li, L. J., Loh, K. P., and Zhang, H., Nat. Chem. 5, 263 (2013).
11. Ramakrishna Matte, H. S. S., Gomathi, A., Manna, A. K., Late, D. J., Datta, R., Pati, S. K., and Rao, C. N. R., Angew. Chem. Int. Ed. 49, 4059 (2010).
12. Bachelier, J., Tillette, M. J., Duchet, J. C., and Cornet, D., J. Catal. 87, 292 (1984).
13. Chorkendorff, I., Jaramillo, T. F., Jorgensen, K. P., Bonde, J., Nielsen, J. H., and Horch, S., Science, 317, 100 (2007).
14. Zhu, Q. J., Wegener, S. L., Xie, C., Uche, O., Neurock, M., and Marks, T. J., Nat. Chem. 5, 104 (2013).
15. Enyashin, A., Gemming, S., and Seifert, G., Eur. Phys. J. Spec. Top. 149, 103 (2007).
16. Wilcoxon, J. P., Newcomer, P. P., and Samara, G. A., Journal of Applied Physics 81, 7934 (1997).
17. Schneemeyer, L. F. and Wrighton, M. S., J. Am. Chem. Soc. 101, 6496 (1979).
18. Lessner, P.M., McLarnon, F.R., Winnick, J., and Cairns, E.J., J. Appl. Electrochem. 22, 927 (1992).
19. Huang, W. Z., Xu, Z. D., Liu, R., Ye, X. F., and Zheng, Y. F., Mater. Res. Bull. 43, 2799 (2008).
20. Finn, S. T. and Macdonald, J. E., Adv. Energy Mater. 4, 1400495 (2014).
21. Segawa, K., Santo, S., Hydrotreatment and hydrocracking of oil fractions, in: Delmon, B., Froment, G. F., Grange, P. (Eds.), Stud. Surf. Sci. Catal. 127, 129 (1999).
22. Devers, E., Afanasiev, P., Jouguet, B., and Vrinat, M., Catal. Lett. 82, 13 (2002).
23. Li, W. J., Shi, E. W., Ko, J. M., Chen, Z. Z., Ogino, H., and Fukuda, T., J. Cryst. Growth, 250, 418 (2003).
24. Zhang, H. P., Lin, H. F., Zheng, Y., Hu, Y. F., and MacLennan, A., Appl. Catal. B 165, 537 (2015).
25. Li, W. J., Shi, E. W., Ko, J. M., Chen, Z. Z., Ogino, H., and Fukuda, T., J. Cryst. Growth, 250, 418 (2003).
26. Huang, W. Z., Xu, Z. D., Liu, R., Ye, X. F. and Zheng, Y. F., Mater. Res. Bull. 43, 2799 (2008).
27. Miki, Y., Nakazato, D., Ikuta, H., Uchida, T. and Wakihara, M., J. Power Sources 54, 508, (1995).
28. Wang, S., Li, G., Du, G., Jiang, X., Feng, C., Guo, Z., and Kim, S. J., Chin. J. Chem. Eng. 18, 910 (2010).
29. Khawula, T. N. Y., Raju, K., Franklyn, P. J., Sigalas, I., and Ozoemena, K. I., J. Mater. Chem. A, (2016) DOI: 10.1039/C6TA00114A
30. Shi, X. X., Pan, L. L., Chen, S. P., Xiao, Y., Liu, Q. Y., Yuan, L. J., Sun, J. T., and Cai, L. T., Langmuir, 25, 5940 (2009).
31. Feng, Y., Zhang, M., Guo, M., and Wang, X., Crystal Growth & Design, 10, 1500 (2010).
32. Vincent, S. P., Biochem. J.177, 757 (1979).
33. Huang, K., Zhang, J., Shi, G., and Liu, Y., Electrochim. Acta, 132, 397 (2014).

Keywords

Related content

Powered by UNSILO

Facile Hydrothermal Synthesis of Molybdenum Disulfide (MoS2) as Advanced Electrodes for Super Capacitors Applications

  • H. Adhikari (a1), C. Ranaweera (a2), R. Gupta (a2) and S. R. Mishra (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.