Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-16T21:59:04.887Z Has data issue: false hasContentIssue false

Fabrication and characterization of (CaxSr1-x)Si2 films prepared by co-sputtering method

Published online by Cambridge University Press:  28 January 2020

Kodai Aoyama
Affiliation:
School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan
Takao Shimizu*
Affiliation:
School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan
Hideto Kuramochi
Affiliation:
Tosoh corporation, 2743-1 Hayakawa, Ayase, Kanagawa 252-1123, Japan
Masami Mesuda
Affiliation:
Tosoh corporation, 2743-1 Hayakawa, Ayase, Kanagawa 252-1123, Japan
Ryo Akiike
Affiliation:
Tosoh corporation, 2743-1 Hayakawa, Ayase, Kanagawa 252-1123, Japan
Keisuke Ide
Affiliation:
Laboratory for Materials and Structures, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
Takayoshi Katase
Affiliation:
Laboratory for Materials and Structures, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
Toshio Kamiya
Affiliation:
Laboratory for Materials and Structures, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
Yoshisato Kimura
Affiliation:
School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan
Hiroshi Funakubo
Affiliation:
School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan
Get access

Abstract

The {100}-oriented (CaxSr1-x)Si2 thin films have been prepared by co-sputtering method at various deposition temperatures. Constituent phase of the films primarily depends on the deposition temperature and the composition x. Although CaSi2 films consisted of layered structure regardless of deposition temperature, the phase was changed by the deposition temperature: the majority phases of the film deposited at 600°C, 650°C and 700°C were 1T layered structure, 1T layered structure + 2H layered structure and 1T layered structure + 6R layered structure, respectively. When the (CaxSr1-x)Si2 films deposited at 700°C, the α-SrSi2-type phase was mainly confirmed below x = 0.17, which is the most stable phase of SrSi2. However, the main phase of all CaxSr1-xSi2 films deposited at 600°C changed to be 1T-type layered structure. Substitution with Ca below x = 0.50 in the film deposited at 600°C led to the decrease in the electrical resistivity compared with that of pure SrSi2.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hirano, T., J. Less Common Met., 167, 329337 (1991).CrossRefGoogle Scholar
Imai, M. and Hirano, T., J. Alloys Compd., 224, 111116 (1995).CrossRefGoogle Scholar
Imai, M., Naka, T., Furubayashi, T., Abe, H., Nakama, T., and Yagasaki, K., Appl. Phys. Lett., 86, 032102 (2005).CrossRefGoogle Scholar
Hashimoto, K., Kurosaki, K., Imamura, Y., Muta, H., and Yamanaka, S., J. Appl. Phys., 102, 063703 (2007).CrossRefGoogle Scholar
Kishino, S., Imai, T., Iida, T., Nakaishi, Y., Shinada, M., Takanashi, Y., and Hamada, N., J. Alloys Compd., 428, 2227 (2007).CrossRefGoogle Scholar
Yoneyama, T., Okada, A., Suzuno, M., Shibutami, T., Matsumaru, K., Saito, N., Yoshizawa, N., Toko, K., and Suemasu, T., Thin Solid Films, 534, 116119 (2013).CrossRefGoogle Scholar
Tokmachev, A. M., Averyanov, D. V., Karateev, I. A., Parfenov, O. E., Vasiliev, A. L., Yakunin, S. N., and Storchak, V. G., Nanoscale, 8, 1622916235 (2016).CrossRefGoogle Scholar
Aoyama, K., Shimizu, T., Kuramochi, H., Mesuda, M., Akiike, R., Kimura, Y., and Funakubo, H., J. Ceram. Soc. Japan, 127, 394398 (2019).CrossRefGoogle Scholar
Brázda, P., Mutombo, P., Ondráček, M., Corrêa, C. A., Kopeček, J., and Palatinus, L., Philos. Mag., 98, 11311150 (2018).CrossRefGoogle Scholar
Flores-Livas, J. A., Debord, R., Botti, S., San Miguel, A., Pailhès, S., and Marques, M. A. L., Phys. Rev. B - Condens. Matter Mater. Phys., 84, 184503 (2011).CrossRefGoogle Scholar
Nedumkandathil, R., Benson, D. E., Grins, J., Spektor, K., and Häussermann, U., J. Solid State Chem., 222, 1824 (2015).CrossRefGoogle Scholar
Imai, M. and Kikegawa, T., Chem. Mater., 15, 25432551 (2003).CrossRefGoogle Scholar
Sanfilippo, S., Elsinger, H., Nunúňez-Regueiro, M., Laborde, O., Lefloch, S., Affronte, M., Olcese, G. L., and Palenzona, A., 61, 38003803 (2000).Google Scholar
Castillo, S. M., Tang, Z., Litvinchuk, A. P., and Guloy, A. M., Inorg. Chem., 55, 1020310207 (2016).CrossRefGoogle Scholar
Saito, K., Oikawa, T., Kurosawa, T., Akai, T., and Funakubo, H., Japanese J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap., 41, 67306734 (2002).CrossRefGoogle Scholar
Katase, T., Endo, K., and Ohta, H., Phys. Rev. B - Condens. Matter Mater. Phys., 90, 161105 (2014).CrossRefGoogle Scholar
Hirano, H., Yamanaka, S., and Hattori, M., 53-56, 635640 (1992).CrossRefGoogle Scholar
Lue, C. S., Wong, S. F., Huang, J. Y., Hsieh, H. L., Liao, H. Y., Ramachandran, B., and Kuo, Y. K., J. Appl. Phys., 113, 15 (2013).Google Scholar
Cutler, M. and Mott, N. F., Phys. Rev. 131, 1336-1340 (1969).CrossRefGoogle Scholar