Skip to main content Accessibility help
×
Home

Experimental and Theoretical Studies of Resistive Switching in Grain Boundaries of Polycrystalline Transition Metal Oxide Film

  • Takumi Moriyama (a1), Sohta Hida (a1), Takahiro Yamasaki (a2), Takahisa Ohno (a2), Satoru Kishida (a1) and Kentaro Kinoshita (a1)...

Abstract

Practical use of Resistive Random Access Memory (ReRAM) depends on thorough understanding of the resistive switching (RS) mechanism in polycrystalline metal oxide films. Based on experimental and theoretical results of NiO based ReRAM, we have proposed a grain surface tiling model, in which grain surfaces (i.e. grain boundaries) are composed by insulating and conductive micro surface structures. This paper reports the adequacy of our model to the NiO based ReRAM and universality of surface electronic properties in metal oxides of NiO, CoO and MgO. Experimental results of RS operating modes suggest that the resistance changes in the grain boundaries, supporting our model. First-principles calculation results suggest that our model can be adopted to other metal oxide materials and the RS from a low resistance to a high resistance can be caused at 1000 K, which agrees with previous experimental reports.

Copyright

Corresponding author

References

Hide All
1. Gibbons, J. F. and Beadle, W. E., Solid-State Electronics 7, 785 (1964).
2. Choi, B. J., Jeong, D. S., Kim, S. K., Rohde, C., Choi, S., Oh, J. H., Kim, H. J., Hwang, C. S., Szot, K., Waser, R., Reichenberg, B., and Tiedke, S., J. Appl. Phys. 98, 033715 (2005).
3. Wei, Z., Kanzawa, Y., Arita, K., Katoh, Y., Kawai, K., Muraoka, S., Mitani, S., Fujii, S., Katayama, K., Iijima, M., Mikawa, T., Ninomiya, T., Miyanaga, R., Kawashima, Y., Tsuji, K., Himeno, A., Okada, T., Azuma, R., Shimakawa, K., Sugaya, H., Takagi, T., Yasuhara, R., Horiba, K., Kumigashira, H., and Oshima, M., IEEE Tech. Dig. 2008, 293.
4. Lee, H. D., Magyari-Kope, B. and Nishi, Y., Phys. Rev. B 81, 193202 (2010).
5. Moriyama, T., Yamasaki, T., Ohno, T., Kishida, S. and Kinoshita, K., J. Appl. Phys. 120, 215302 (2016).
6. Moriyama, T., Koishi, R., Kimura, K., Kishida, S., and Kinoshita, K., Advances in Science and Technology 95, 84 (2014).
7. Russo, U., Ielmini, D., Cagli, C., Lacaita, A. L., Spiga, S., Wiemer, C., Perego, M., and Fanciulli, M., IEDM Tech. Dig., 2007, p. 775.
8. Ohno, T., Yamamoto, T., Kokubo, T., Azami, A.. Sakaguchi, Y. Uda, T., Yamasaki, T., Fukuta, D., and Koga, J., SC’07 Proceedings of the 2007 ACM/IEEE conference on Supercomputing, Article No. 57 (2007).
9. Kohn, W., and Sham, L. J., Phys. Rev. 140, A1133 (1965).
10. Perdew, J. P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).
11. Sarhan, A., Nakanishi, H., Dino, W. A., Kishi, H., and Kasai, H., Surface Science 606, 239 (2012).
12. Yu, J., Rosso, M., and Bruemmer, S. M., J. Phys. Chem. C 116, 1948 (2012).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed