Skip to main content Accessibility help

Evolution of cations speciation during the initial leaching stage of alkali-borosilicate-glasses

  • Osama M. Farid (a1), M.I. Ojovan (a2) and R.O. Abdel Rahman (a3)


Alkali-borosilicate glasses (ABS) are used as host immobilization matrices for different radioactive waste streams and are characterized by their ability to incorporate a wide variety of metal oxides with respectively high waste loadings. The vitreous wasteform is also characterized by very good physical and chemical durability. The durability of three ABS compositions were analyzed by investigating their leaching behavior using the MCC1 test protocol and these data were used to investigate the waste components retention in the altered layer and the evolution of the interfacial water composition during the test. The results indicated that the Mg species evolution is exceptional with respect to other alkaline elements and dependent on glass matrix composition and leaching progress, while transition elements speciation is fairly constant throughout leaching process and independent on glass compositions. Si and B species are changing during leaching process and are affected by waste composition. For modified wasteform sample, evolution of Mg, Si and B species is respectively constant, whereas at highest waste loading, these elements have fairly constant speciation evolution within the first 2 weeks of leaching.


Corresponding author


Hide All
[1]Abdel Rahman, R.O., El Kamash, A.M., Zaki, A.A., El Sourougy, M.R., In Proceedings of the International Conference on the Safety of Radioactive Waste Disposal (IAEA, Vienna, 2005) IAEA-CN-135/81, p. 317
[2]Abdel Rahman, R.O., Kozak, M.W., Hung, Y.T., In Handbook of Environment and Waste Management, edited by Hung, Y.T., Wang, L.K., Shammas, N.K. (World Scientific Publishing Co., Singapore, 2014)p. 949.
[3]Abdel Rahman, R.O., El-Kamash, A.M., Zaki, A.A., Hazard. Mater. 145, 372-380 (2007).
[4]NEA, The Safety Case for Deep Geological Disposal of Radioactive Waste, (NEA, Paris, 2013)
[5]NEA, Scenario Development Workshop Synopsis, Integration Group for the Safety Case, (NEA, Paris, 2016)
[6]NEA, Managing Information and Requirements in Geological Disposal Programmes, (NEA, Paris, 2018)
[7]NEA, Updating the NEA International FEP List: An IGSC Technical Note Technical Note 2: Proposed Revisions to the NEA International FEP List, (NEA, Paris, 2014)
[8]Abdel Rahman, R.O., Ojovan, Michael I., Innov. Corrosion Mater. Sci. 4 (2), 90-95 (2014).
[9]Menard, O., Advocat, T., Ambrosi, J. P., Michard, A., Appl. Geochem. 13, 105-126 (1998).
[10]Abdel Rahman, R.O., Zein, D.H., Abo Shadi, H., Chem. Eng. J. 228, 772-780 (2013).
[11]Abdel Rahman, R.O., Zein, D.H., Abo Shadi, H., Chem. Eng. J. 245, 276-287 (2014).
[12]Drace, Z., Mele, I., Ojovan, M.I., Abdel Rahman, R.O.. Mater. Res. Soc. Symp. Proc. 1475, 253-264(2012).
[13]IAEA, Radioactive waste management glossary (IAEA, Vienna, 2003).
[14]Abdel Rahman, Rehab O., Rakhimov, Ravil Z., Rakhimova, Nailya R., Ojovan, Michael I., Cementitious materials for nuclear waste immobilization, (Wiley, New York, 2014).
[15]Osama M Farid, R.O.Abdel Rahman, Mater. Chem. Phy. 186, 462-469(2017).10.1016/j.matchemphys.2016.11.020
[16]Farid, Osama M., Ojovan, Michael I., Massoud, A., Abdel Rahman, R.O., Materials 12(9) 1462(2019).
[17]Ojovan, M.I., Lee, W.E.. An Introduction to Nuclear Waste Immobilisation (Elsevier, Amsterdam, 2014) p. 362.
[18]Ojovan, M.I.. Handbook of Advanced Radioactive Waste Conditioning Technologies (Woodhead, Cambridge, 2011) p. 512.
[19]The National Academies Press. Waste Forms Technology and Performance: Final Report. Committee on Waste Forms Technology and Performance (National Research Council: Washington,2011) p. 340
[20]Ma, T., Jivkov, A.P., Li, W., Liang, W., Wang, Y., Xu, H., Han, X., J. Nucl. Mater. 486, 70-85 (2017).
[21]Jantzen, C.M., Trivelpiece, C.L., Crawford, C.L., Pareizs, J.M., Pickett, J.B., Int. J. Appl. Glass Sci. 8, 6983 (2017).
[22]Neeway, J.J., Rieke, P.C., Parruzot, B.P., Ryan, J.V., Asmussen, R.M., Geochim. Cosmochim. Acta 226, 132148(2018).
[23]Guoa, R., Brigdena, C.T., Ginb, S., Swantonc, S.W., Farnana, I., J. Non-Cryst. Solids 497, 8292 (2018).
[24]Gin, S., Jollivet, P., Fournier, M., Berthon, C., Wang, Z., Mitroshkov, A., Zhu, Z., Ryan, J.V., Geochim. Cosmochim. Acta 151, 6885 (2015).
[25]Inagaki, Y., Kikunaga, T., Idemitsu, K., Arima, T., Int. J. Appl. Glass Sci. 4, 317-327 (2013).
[26]Kim, C.W.; Lee, B.G.J. Korean Radioact. Waste Soc. 11, 19 (2013).
[27]Curti, E., Grolimund, D., Borca, C.N., Appl. Geochem. 27, 5663 (2012).
[28]Curti, E., Dahn, R., Farges, F., Vespa, M., Geochim. Cosmochim. Acta 73, 22832298(2009).
[29]Jollivet, P., Angeli, F., Cailleteau, C., Devreux, F., Frugier, P. , Gin, S., J. Non-Cryst. Solids 354, 49524958(2008).
[30]Manaktala, H.K., An Assessment of Borosilicate Glass as a High-level Waste Form, (NRC, USA, 1992).
[31]Ojovan, M.I., Lee, W.E., Metall. Mater. Trans. A 42, 837-851(2011).
[32]Trocellier, P., Djanarthany, S., Chene, J., Haddi, A., Brass, A.M., Poissonnet, S., Farges, F., Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater At. 240 (1-2) 337-344(2005).
[33]Dugger, D. L., Stanton, J. H., Irby, B. N., McConnel, B. L., Cummings, W. W., and Maatman, R. W., J. Phys. Chem. 68, 757-760 (1964).
[34]Leaching of glass waste structure and humidity cell tests (2019). available at: (accessed 22 October 2019)


Evolution of cations speciation during the initial leaching stage of alkali-borosilicate-glasses

  • Osama M. Farid (a1), M.I. Ojovan (a2) and R.O. Abdel Rahman (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed