Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-13T08:01:22.199Z Has data issue: false hasContentIssue false

Electronic Structure and N-Type Doping in Diamond from First Principles

Published online by Cambridge University Press:  01 February 2016

Kamil Czelej
Affiliation:
Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland
Piotr Śpiewak*
Affiliation:
Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland
Krzysztof J. Kurzydłowski
Affiliation:
Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland
Get access

Abstract

An investigation of the electronic structure of charged vacancies and X(C), X=(As, Sb, P) substitutional centers in diamond has been carried out by means of ab initio density functional theory. The revised Heyd-Scuseria-Ernzerhof screened hybrid functional (HSE06) was utilized for the total energy calculation. The equilibrium geometry, defect charge transition levels and energetics of the vacancies and substitutional centers were determined. It is found that substitutional As and Sb introduce a donor level into the band gap about 0.5 eV with respect to the conduction band minimum (CBM), therefore, these elements may be a good choice for achieving n-type diamond. From a technological point of view, however, fabrication of As and Sb doped diamond would be challenging due to its high, positive formation energy.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Isberg, J., Hammersberg, J., Johansson, E., Wikstrom, T., Twitchen, D. J., Whitehead, A. J., Coe, S. E., and Scarsbrook, G. A., Science 297, 1670 (2002).CrossRefGoogle Scholar
Collins, A. T., in Properties and Growth of Diamond, edited by Davies, G., Chap. 9.7, p. 288, (INSPEC, London, 1994).Google Scholar
Yamanaka, S., Watanabe, H., Masai, S., Takenuchi, D., Okushi, H., Kajimura, K., Jpn. J. Appl. Phys. 37, L1129 (1998).CrossRefGoogle Scholar
Collins, A. T., Mater. Res. Soc. Symp. Proc. 162, 3 (1990).CrossRefGoogle Scholar
Fujimoro, N., Imai, T., Nakahata, H., Shiomi, H., Nishibayashi, Y., Mater. Res. Soc. Symp. Proc. 162, 23 (1990).CrossRefGoogle Scholar
Saito, Y., J. Mater. Sci. 23, 842 (1988).CrossRefGoogle Scholar
Lowther, J. E., Phys. Rev. B 67 115206 (2003).CrossRefGoogle Scholar
Kajihara, S. A., Antonelli, A., Bernholc, J. and Car, R., Phys. Rev. Lett. 66, 2010 (1991).CrossRefGoogle Scholar
Li, R. B., Hu, X. J., Shen, H. S. and He, X. C., Mater. Lett. 58, 1835 (2004).CrossRefGoogle Scholar
Hu, X. J., Li, R. B., Shen, H. S., Dai, Y. B. and He, X. C., Carbon 42, 1501 (2004).CrossRefGoogle Scholar
Anderson, A. B. and Mehandru, S. P., Phys. Rev. B 48, 4423 (1993).CrossRefGoogle Scholar
Dai, Y., Han, S. H., Huang, B. B. and Dai, D. D., Mater. Sci. Eng. 99, 531 (2003).CrossRefGoogle Scholar
Zvanut, M. E., Carlos, W. E., Freitas, J. A. Jr., Jamison, K. D. and Hellmer, R. P., Appl. Phys. Lett. 65, 2287 (1994).CrossRefGoogle Scholar
Melnikov, A. A., Denisenko, A. V., Zaitsev, A. M., Shulenkov, A., Varichenko, V. S., Filipp, A. R., Dravin, V. A., Kanda, H. and Fahrner, W. R., J. Appl. Phys. 84, 6127 (1998).CrossRefGoogle Scholar
Rohrer, E., Graeff, C. F. O., Janssen, R., Nebel, C. E., Stutzmann, M., Guttler, H., Zachai, R., Phys. Rev. B 54, 7874 (1996).CrossRefGoogle Scholar
Suzuki, M., Yoshida, H., Sakuma, N., Ono, T., Sakai, T. and Koizumi, S., Appl. Phys. Lett. 84, 2349 (2004).CrossRefGoogle Scholar
Koizumi, S. and Suzuki, M., Phys. Status Solidi a 203, 3358 (2006).CrossRefGoogle Scholar
Sque, S. J., Jones, R., Goss, J. P. and Briddon, P. R., Phys. Rev. Lett. 92, 017402 (2004).CrossRefGoogle Scholar
Kalish, R., Reznik, A., Uzan-Saguy, C. and Cytermann, C., Appl. Phys. Lett. 76, 757 (2000).CrossRefGoogle Scholar
Prins, J. F., Phys. Rev. B 61, 7191 (2000).CrossRefGoogle Scholar
Miyazaki, T., Okushi, H. and Uda, T., Phys. Rev. Lett. 88, 066402 (2002).CrossRefGoogle Scholar
Goss, J. P., J. Phys.: Condens. Matter. 15, R551 (2003).Google Scholar
Dai, Y., Yan, C. X., Li, A. Y., Zhang, Y. and Han, S. H., Carbon 43, 1009 (2005).CrossRefGoogle Scholar
Kresse, G. and Furthmuller, J., Phys. Rev. B 54, 11169 (1996); Blochl, P. E., ibid. 50, 17953(1994); Kresse, G. and Joubert, D., ibid. 59, 1758 (1999).CrossRefGoogle Scholar
Heyd, J., Scuseria, G. E., and Ernzerhof, M., J. Chem. Phys. 118, 8207 (2003).CrossRefGoogle Scholar
Krukau, A. V., Vydrov, O. A., Izmaylov, A. F., and Scuseria, G. E., J. Chem. Phys. 125, 224106 (2006).CrossRefGoogle Scholar
Lany, S. and Zunger, A., Phys. Rev. B 80, 085202 (2009).CrossRefGoogle Scholar
Gali, A., Janzen, E., Deak, P., Kresse, G., and Kaxiras, E., Phys. Rev. Lett. 103, 186404 (2009).CrossRefGoogle Scholar
Deak, P., Aradi, B., Frauenheim, T., Janzen, E., and Gali, A., Phys. Rev. B 81, 153203 (2010).CrossRefGoogle Scholar
Śpiewak, P and Kurzydłowski, K. J., Phys. Rev. B 88, 195204 (2013).CrossRefGoogle Scholar
Gali, A. and Maze, J. R., Phys. Rev. B 88, 235205 (2013).CrossRefGoogle Scholar
Monkhorst, H. J. and Pack, J. D., Phys. Rev. B 13, 5188 (1976).CrossRefGoogle Scholar
Madelung, O., (ed.), Semiconductors. Group IV Elements and II-V Compounds, Data in Science and Technology (Springer,Berlin, 1991).Google Scholar
Lany, S. and Zunger, A., Phys. Rev. B 78, 235104 (2008).CrossRefGoogle Scholar
Deak, P., Aradi, B., Kaviani, M., Frauenheim, T. and Gali, A., Phys. Rev. B 89, 075203 (2014).CrossRefGoogle Scholar
Weber, J. R., Koehl, W. F., Varley, J. B., Janotti, A., Buckley, B. B., Van de Walle, C. G., and Awschalom, D. D., PNAS 107, 8513 (2010).CrossRefGoogle Scholar