Skip to main content Accessibility help

Electron Spin Resonance Investigations on Perovskite Solar Cell Materials Deposited on Glass Substrate

  • C. L. Saiz (a1), E. Castro (a2), L. M. Martinez (a1), S. R. J. Hennadige (a2), L. Echegoyen (a2) and S. R. Singamaneni (a1)...


In this article, we report low-temperature electron spin resonance (ESR) investigations carried out on solution processed three-layer inverted solar cell structures: PC61BM/CH3NH3PbI3/PEDOT:PSS/Glass, where PC61BM and PEDOT:PSS act as electron and hole transport layers, respectively. ESR measurements were conducted on ex-situ light (1 Sun) illuminated samples. We find two distinct ESR spectra. First ESR spectra resembles a typical powder pattern, associated with gx = gy = 4.2; gz = 9.2, found to be originated from Fe3+ extrinsic impurity located in the glass substrate. Second ESR spectra contains a broad (peak-to-peak line width ∼ 10 G) and intense ESR signal appearing at g = 2.008; and a weak, partly overlapped, but much narrower (peak-to-peak line width ∼ 4 G) ESR signal at g = 2.0022. Both sets of ESR spectra degrade in intensity upon light illumination. The latter two signals were found to stem from light-induced silicon dangling bonds and oxygen vacancies, respectively. Our controlled measurements confirm that these centers were generated during UV-ozone treatment of the glass substrate –a necessary step to be performed before PEDOT:PSS is spin coated. This work forms a significant step in understanding the light-induced- as well as extrinsic defects in perovskite solar cell materials.


Corresponding author



Hide All
1.Xing, G., Mathews, N., Sun, S., Lim, S. S., Lam, Y. M., Grätzel, M., Mhaisalkar, S., Sum, T. C.. Sci. 342, 344347 (2013).
2.Shao, Y., Xiao, Z., Bi, C., Yuan, Y., Huang, J.. Nat. Comm. 5, 57845791 (2014).
3.Hao, W., Chen, X., and Li, S.. J. Phys. Chem. C, 120, 2844828455, (2016).
4.Yang, Y. and You, J.. Nature 544, 155156 (2017).
5.Jordan, Dirk C., Silverman, T. J., Wohlgemuth, J. H., Kurtz, S. R. and VanSant, K. T.. Prog. Photovolt: Res. Appl. 25, 318326 (2017).
6.Yin, W-J, Shi, T., and Yan, Y.. Appl. Phys. Lett., 104, 063903063907 (2014).
7.Duan, H-S, Zhou, H., Chen, Q., Sun, P., Luo, S., Song, T-B, Bob, B. and Yang, Y.. Phys. Chem. Chem. Phys. 17, 112 (2014).
8.deQuilettes, D. W., Vorpahl, S. M., Stranks, S. D., Nagaoka, H., Eperon, G. E., Ziffer, M. E., Snaith, H. J., Ginger, D. S.. Science 348, 683-686 (2015).
9.Lee, J-K, You, S., Jeon, S., Ryu, N-H, Park, K. H., Myung-Hoon, K., Kim, D. H., Kim, S. H., and Schiff, Eric A.. J. Appl. Phys. 118, 015501015507 (2015).
10.Shkrob, I. A., and Marin, T. W.. J. Phys. Chem. Lett., 5, 10661071 (2014).
11.Namatame, M., Yabusaki, M., Watanabe, T., Ogomi, Y., Hayase, S., and Marumoto, K.. Appl. Phys. Lett., 110, 123904123909 (2017).
12.Tian, C., Castro, E., Wang, T., Betancourt-Solis, G., Rodriguez, G., and Echegoyen, L.. ACS Appl. Mater. Interfaces, 8, 3142631432 (2016).
13.Tian, C., Kochiss, K., Castro, E., Betancourt-Solis, G., Hanb, H. and Echegoyen, L.. J. Mater. Chem. A. 5, 7326 (2017).
14.Padlyak, B. V.. Current Topics in Biophysics, 33 (suppl A), 163170 (2010).
15.Even, J., Pedesseau, L., Jancu, J-M, and Katan, C.. J. Phys. Chem. Lett., 4, 29993005 (2013).
16.Xue, P., Pei, D., Zheng, H., Li, W., Afanas’ev, V. V., Baklanov, M. R., de Marneffe c, J-F, Lin d, Y-H, H-SumFung, , Chend, C-chi, Nishi, Y, J. Leon Shohet. Thin Solid Films 616, 2326 (2016).
17.Fungura, F., Lindemann, W. R., Shinar, J., and Shinar, R.. Adv. Energy Mater., 7, 16014201601431 (2017).
18.Anderson, S.., J. of Chem. Phys. 50, 2783 (1969).
19.Bogomolova, L.D., Zhachkin, V.A., Pavlushkina, T.K. Glass Ceram. Vol. 72, Nos. 3. (2015).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed