Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-19T10:02:40.872Z Has data issue: false hasContentIssue false

Electrically Coupling Multifunctional Oxides to Semiconductors: A Route to Novel Material Functionalities

Published online by Cambridge University Press:  04 February 2016

J. H. Ngai*
Affiliation:
Department of Physics, University of Texas-Arlington, Arlington, TX 76019, U.S.A.
K. Ahmadi-Majlan
Affiliation:
Department of Physics, University of Texas-Arlington, Arlington, TX 76019, U.S.A.
J. Moghadam
Affiliation:
Department of Physics, University of Texas-Arlington, Arlington, TX 76019, U.S.A.
M. Chrysler
Affiliation:
Department of Physics, University of Texas-Arlington, Arlington, TX 76019, U.S.A.
D. P. Kumah
Affiliation:
Department of Applied Physics and Center for Research on Interface Structures and Phenomena,Yale University, New Haven, CT 06511, U.S.A.
C. H. Ahn
Affiliation:
Department of Applied Physics and Center for Research on Interface Structures and Phenomena,Yale University, New Haven, CT 06511, U.S.A.
F. J. Walker
Affiliation:
Department of Applied Physics and Center for Research on Interface Structures and Phenomena,Yale University, New Haven, CT 06511, U.S.A.
T. Droubay
Affiliation:
Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, U.S.A.
M. Bowden
Affiliation:
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, U.S.A.
S. A. Chambers
Affiliation:
Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, U.S.A.
X. Shen
Affiliation:
Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, U.S.A.
D. Su
Affiliation:
Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, U.S.A.
*
*(Email: jngai@uta.edu)
Get access

Abstract

Complex oxides and semiconductors exhibit distinct yet complementary properties owing to their respective ionic and covalent natures. By electrically coupling oxides to semiconductors within epitaxial heterostructures, enhanced or novel functionalities beyond those of the constituent materials can potentially be realized. Key to electrically coupling oxides to semiconductors is controlling the physical and electronic structure of semiconductor – crystalline oxide heterostructures. Here we discuss how composition of the oxide can be manipulated to control physical and electronic structure in Ba1-xSrxTiO3/ Ge and SrZrxTi1-xO3/Ge heterostructures. In the case of the former we discuss how strain can be engineered through composition to enable the re-orientable ferroelectric polarization to be coupled to carriers in the semiconductor. In the case of the latter we discuss how composition can be exploited to control the band offset at the semiconductor - oxide interface. The ability to control the band offset, i.e. band-gap engineering, provides a pathway to electrically couple crystalline oxides to semiconductors to realize a host of functionalities.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Reiner, J. W., Kolpak, A. M., Segal, Y., Garrity, K. F., Ismail-Beigi, S., Ahn, C. H. and Walker, F. J., Adv. Mater. 22, 2919 (2010).Google Scholar
Demkov, A. A. and Posadas, A. B., Integration of Functional Oxides with Semiconductors, New York: Springer-Verlag (2014).Google Scholar
Baek, S. H. and Eom, C. -B., Acta Materiala 61, 2734 (2013).Google Scholar
McKee, R. A., Walker, F. J. and Chisholm, M. F., Phys. Rev. Lett. 81, 3014 (1998).CrossRefGoogle Scholar
Ngai, J. H., Kumah, D. P., Ahn, C. H. and Walker, F. J.,Appl. Phys. Lett. 104, 062905 (2014).CrossRefGoogle Scholar
Moghadam, J., Ahmadi-Majlan, K., Shen, X., Droubay, T., Bowden, M., Chrysler, M., Su, D., Chambers, S. A. and Ngai, J. H., Adv. Mater. Interfaces 2, 1400497 (2015).Google Scholar
Takahashi, K., Aizawa, K., Park, B. -E. and Ishiwara, H., Jap. J. Appl. Phys. 44, 6218 (2005).Google Scholar
Salahuddin, S. and Datta, S., Nano Lett. 8, 405 (2008).CrossRefGoogle Scholar
Auciello, O., de Araujo, C. A. P. and Selinska, J., "Review of the Science and Technology for Low- and High-Density Nonvolatile Ferroelectric Memories," in Emerging Non-volatile Memories, New York, Springer (2014).Google Scholar
Setter, N., Damjanovic, D., Eng, L., Fox, G., Gevorgian, S., Hong, S., Kingon, A., Kohlstedt, H., Park, N. Y., Stephenson, G. B., Stolitchnov, I., Tagantsev, A. K., Taylor, D. V., Yamada, T. and Streiffer, S., J. Appl. Phys. 100, 051606 (2006).Google Scholar
Reiner, J. W., Walker, F. J., McKee, R. A., Billman, C. A., Junquera, J., Rabe, K. M. and Ahn, C. H., Phys. Stat. Solidi B 241, 2287 (2004).Google Scholar
Choi, K. J., Biegalski, M., Li, Y. L., Sharan, A., Schubert, J., Uecker, R., Reiche, P., Chen, Y. B., Pan, X. Q., Gopalan, V., Chen, L. -Q., Schlom, D. G. and Eom, C. B., Science 306, 1005 (2004).Google Scholar
Vaithyanathan, V., Lettieri, J., Tian, W., Sharan, A., Vasudevarao, A., Li, Y. L., Kochhar, A., Ma, H., Levy, J., Zschack, P., Woicik, J. C., Chen, L. Q., Gopalan, V. and Schlom, D. G., J. Appl. Phys. 100, 024108 (2006).Google Scholar
Contreras-Guerrero, R., Veazey, J. P., Levy, J. and Droopad, R., Appl. Phys. Lett. 102, 012907 (2013).Google Scholar
Ponath, P., Fredrickson, K., Posadas, A. B., Ren, Y., Wu, X., Vasudevan, R. K., Okatan, M. B., Jesse, S., Aoki, T., McCartney, M. R., Smith, D. J., Kalinin, S. V., Lai, K. and Demkov, A. A., Nat. Comm. 6, 6067 (2014).CrossRefGoogle Scholar
Ngai, J. H. et al. ., in preparation, 2016.Google Scholar
Klein, A. and Chen, F., Phys. Rev. B 86, 094105 (2012).Google Scholar
Wen, Z., Li, C., Wu, D., Li, A. and Ming, N., Nat. Mater. 12, 617 (2013).Google Scholar
The difference in energy between the valence band to Ge3d for Ge(110) was taken from Ref. 20. The value for Ge(100) will differ from Ge(110) by only a few hundredths of an eV.Google Scholar
Kraut, E. A., Grant, R. W., Waldrop, J. W. and Kowalczyk, S. P., Phys. Rev. Lett. 44, 1620 (1980).Google Scholar
Chambers, S. A., Liang, Y., Yu, Z., Droopad, R. and Ramdani, J., J. Vac. Sci. Technol. A 19, 934 (2001).Google Scholar
Amy, F., Wan, A., Kahn, A., Walker, F. J. and McKee, R. A., J. Appl. Phys. 96, 1601 (2004).Google Scholar
Zutic, I., Fabian, J. and Das Sarma, S., Resv. Mod. Phys. 76, 323 (2004).Google Scholar