Skip to main content Accessibility help

Electrically Coupling Multifunctional Oxides to Semiconductors: A Route to Novel Material Functionalities

  • J. H. Ngai (a1), K. Ahmadi-Majlan (a1), J. Moghadam (a1), M. Chrysler (a1), D. P. Kumah (a2), C. H. Ahn (a2), F. J. Walker (a2), T. Droubay (a3), M. Bowden (a4), S. A. Chambers (a3), X. Shen (a5) and D. Su (a5)...


Complex oxides and semiconductors exhibit distinct yet complementary properties owing to their respective ionic and covalent natures. By electrically coupling oxides to semiconductors within epitaxial heterostructures, enhanced or novel functionalities beyond those of the constituent materials can potentially be realized. Key to electrically coupling oxides to semiconductors is controlling the physical and electronic structure of semiconductor – crystalline oxide heterostructures. Here we discuss how composition of the oxide can be manipulated to control physical and electronic structure in Ba1-xSrxTiO3/ Ge and SrZrxTi1-xO3/Ge heterostructures. In the case of the former we discuss how strain can be engineered through composition to enable the re-orientable ferroelectric polarization to be coupled to carriers in the semiconductor. In the case of the latter we discuss how composition can be exploited to control the band offset at the semiconductor - oxide interface. The ability to control the band offset, i.e. band-gap engineering, provides a pathway to electrically couple crystalline oxides to semiconductors to realize a host of functionalities.


Corresponding author



Hide All
[1] Reiner, J. W., Kolpak, A. M., Segal, Y., Garrity, K. F., Ismail-Beigi, S., Ahn, C. H. and Walker, F. J., Adv. Mater. 22, 2919 (2010).
[2] Demkov, A. A. and Posadas, A. B., Integration of Functional Oxides with Semiconductors, New York: Springer-Verlag (2014).
[3] Baek, S. H. and Eom, C. -B., Acta Materiala 61, 2734 (2013).
[4] McKee, R. A., Walker, F. J. and Chisholm, M. F., Phys. Rev. Lett. 81, 3014 (1998).
[5] Ngai, J. H., Kumah, D. P., Ahn, C. H. and Walker, F. J.,Appl. Phys. Lett. 104, 062905 (2014).
[6] Moghadam, J., Ahmadi-Majlan, K., Shen, X., Droubay, T., Bowden, M., Chrysler, M., Su, D., Chambers, S. A. and Ngai, J. H., Adv. Mater. Interfaces 2, 1400497 (2015).
[7] Takahashi, K., Aizawa, K., Park, B. -E. and Ishiwara, H., Jap. J. Appl. Phys. 44, 6218 (2005).
[8] Salahuddin, S. and Datta, S., Nano Lett. 8, 405 (2008).
[9] Auciello, O., de Araujo, C. A. P. and Selinska, J., "Review of the Science and Technology for Low- and High-Density Nonvolatile Ferroelectric Memories," in Emerging Non-volatile Memories, New York, Springer (2014).
[10] Setter, N., Damjanovic, D., Eng, L., Fox, G., Gevorgian, S., Hong, S., Kingon, A., Kohlstedt, H., Park, N. Y., Stephenson, G. B., Stolitchnov, I., Tagantsev, A. K., Taylor, D. V., Yamada, T. and Streiffer, S., J. Appl. Phys. 100, 051606 (2006).
[11] Reiner, J. W., Walker, F. J., McKee, R. A., Billman, C. A., Junquera, J., Rabe, K. M. and Ahn, C. H., Phys. Stat. Solidi B 241, 2287 (2004).
[12] Choi, K. J., Biegalski, M., Li, Y. L., Sharan, A., Schubert, J., Uecker, R., Reiche, P., Chen, Y. B., Pan, X. Q., Gopalan, V., Chen, L. -Q., Schlom, D. G. and Eom, C. B., Science 306, 1005 (2004).
[13] Vaithyanathan, V., Lettieri, J., Tian, W., Sharan, A., Vasudevarao, A., Li, Y. L., Kochhar, A., Ma, H., Levy, J., Zschack, P., Woicik, J. C., Chen, L. Q., Gopalan, V. and Schlom, D. G., J. Appl. Phys. 100, 024108 (2006).
[14] Contreras-Guerrero, R., Veazey, J. P., Levy, J. and Droopad, R., Appl. Phys. Lett. 102, 012907 (2013).
[15] Ponath, P., Fredrickson, K., Posadas, A. B., Ren, Y., Wu, X., Vasudevan, R. K., Okatan, M. B., Jesse, S., Aoki, T., McCartney, M. R., Smith, D. J., Kalinin, S. V., Lai, K. and Demkov, A. A., Nat. Comm. 6, 6067 (2014).
[16] Ngai, J. H. et al. ., in preparation, 2016.
[17] Klein, A. and Chen, F., Phys. Rev. B 86, 094105 (2012).
[18] Wen, Z., Li, C., Wu, D., Li, A. and Ming, N., Nat. Mater. 12, 617 (2013).
[19] The difference in energy between the valence band to Ge3d for Ge(110) was taken from Ref. 20. The value for Ge(100) will differ from Ge(110) by only a few hundredths of an eV.
[20] Kraut, E. A., Grant, R. W., Waldrop, J. W. and Kowalczyk, S. P., Phys. Rev. Lett. 44, 1620 (1980).
[21] Chambers, S. A., Liang, Y., Yu, Z., Droopad, R. and Ramdani, J., J. Vac. Sci. Technol. A 19, 934 (2001).
[22] Amy, F., Wan, A., Kahn, A., Walker, F. J. and McKee, R. A., J. Appl. Phys. 96, 1601 (2004).
[23] Zutic, I., Fabian, J. and Das Sarma, S., Resv. Mod. Phys. 76, 323 (2004).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed