Skip to main content Accessibility help

Electrical study of radiation hard designed HfO2-based 1T-1R RRAM devices

  • Eduardo Pérez (a1), Florian Teply (a1) and Christian Wenger (a1)


In this work the electrical performance of a radiation hard designed 1T-1R resistive random access memory (RRAM) device is investigated in DC (voltage sweep) and AC (pulsed voltage) modes. This new device is based on the combination of an Enclosed Layout Transistor (ELT) used as selector device and a TiN/ HfO2/ Ti/TiN RRAM stack used as resistive device. The high cell to cell variability in the DC mode makes it difficult to define an electrical gap between the High Resistive State (HRS) and the Low Resistive State (LRS). The strong reduction of the variability by the use of Incremental Step Pulse with Verify Algorithm (ISPVA) makes the later a mandatory programming approach. The Quantum Point Contact (QPC) model defines an energy barrier located in the rupture point of the filament in HRS. The compensation between the width and height variations of this barrier during cycling could explain the stability of HRS and LRS. The good performance of the proposed device using the ISPVA programming approach makes it a good candidate for Rad-Hard Non Volatile Memories integration.


Corresponding author


Hide All
1. Chen, D., Kim, H., Phan, A., Wilcox, E., LaBel, K., Buchner, S., Khachatrian, A., and Roche, N., IEEE Trans. on Nuclear Science 61, 30883094 (2014).
2. Waser, R., and Aono, M., Nature Mater. 6, 833840 (2007).
3. Lin, K.-L., Hou, T.-H., Shieh, J., Lin, J.-H., Chou, C.-T., and Lee, Y.-J., J. of Appl. Phys. 109, 084104 (2011).
4. Grossi, A., Zambelli, C., Olivo, P., Miranda, E., Stikanov, V., Schroeder, T., Walczyk, C., and Wenger, C., in IEEE Int. Memory Workshop, (2015), pp. 14.
5. Weeden-Wright, S., Bennett, W., Hooten, N., Zhang, E. X., McCurdy, M., King, M., Weller, R., Mendenhall, M., Alles, M., Linten, D., Jurczak, M., Degraeve, R., Fantini, A., Reed, R., Fleetwood, D., and Schrimpf, R., IEEE Trans. on Nuclear Science 61, 29722978 (2014).
6. Xue, F., Ping, L., Wei, L., Bin, Z., Xiaodong, X., Gang, W., Bin, H., and Yahong, Z., J. of Semicond. 32, 084002 (2011).
7. Chen, F., Lee, H., Chen, Y., Hsu, Y., Zhang, L., Chen, P., Chen, W., Gu, P., Liu, W., Wang, S., Tsai, C., Sheu, S., Tsai, M., and Huang, R., Sci. China Inf. Sci. 54, 10731086 (2011).
8. Higuchi, K., Iwasaki, T., and Takeuchi, K., in IEEE Int. Memory Workshop, (2012), pp. 14.
9. Grossi, A., Zambelli, C., Olivo, P., Miranda, E., Stikanov, V., Walczyk, C., and Wenger, C., Solid State Electron. 115, 1725 (2016).
10. Miranda, E., Walczyk, C., Wenger, C., and Schroeder, T., IEEE Electron Dev. Lett. 31, 609 (2010).
11. Miranda, E., Jimenez, D., and Sune, J., IEEE Electron Dev. Lett. 33, 1474 (2012).
12. Prócel, L.M., Trojman, L., Moreno, J., Crupi, F., Maccaronio, V., Degraeve, R., Goux, L., and Simoen, E., J. of Appl. Phys. 114, 074509 (2013).
13. Grossi, A., Perez, E., Zambelli, C., Olivo, P., and Wenger, Ch., in EUROSOI Workshop, (2016).
14. Pérez, E., Wenger, Ch., Grossi, A., Zambelli, C., Olivo, P., and Roelofs, R., J. of Vac. Sci. and Technol. B 35, 01A103 (2017).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed