Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T20:13:51.368Z Has data issue: false hasContentIssue false

The effect of dislocation nature on the size effect in Indium Antimonide above and below the brittle-ductile transition

Published online by Cambridge University Press:  07 October 2019

J.M. Wheeler*
Affiliation:
ETH Zürich Laboratory for Nanometallurgy Department of Materials Science Vladimir-Prelog-Weg 5, Zürich CH-8093, Switzerland Empa, Swiss Federal Laboratories for Materials Science and Technology Laboratory for Mechanics of Materials and Nanostructures Feuerwerkerstrasse 39, Thun CH-3602, Switzerland
L. Thilly
Affiliation:
Institut Pprime, CNRS-University of Poitiers-ENSMA, SP2MI, Futuroscope 86962, France
Y. Zou
Affiliation:
ETH Zürich Laboratory for Nanometallurgy Department of Materials Science Vladimir-Prelog-Weg 5, Zürich CH-8093, Switzerland
A. Morel
Affiliation:
Empa, Swiss Federal Laboratories for Materials Science and Technology Laboratory for Mechanics of Materials and Nanostructures Feuerwerkerstrasse 39, Thun CH-3602, Switzerland
R. Raghavan
Affiliation:
Empa, Swiss Federal Laboratories for Materials Science and Technology Laboratory for Mechanics of Materials and Nanostructures Feuerwerkerstrasse 39, Thun CH-3602, Switzerland Department of Materials Engineering Indian Institute of Science Bangalore – 560012, India
J. Michler
Affiliation:
Empa, Swiss Federal Laboratories for Materials Science and Technology Laboratory for Mechanics of Materials and Nanostructures Feuerwerkerstrasse 39, Thun CH-3602, Switzerland
Get access

Abstract

The effect of length scale on mechanical strength is a significant consideration for semiconductor materials. In III-V semiconductors, such as InSb, a transition from partial to perfect dislocations occurs at the brittle-to-ductile transition temperature (~150 °C for InSb). High temperature micro-compression reveals InSb to show a small size effect below the transition, similar to ceramics, while in the ductile regime it shows a size effect consistent with fcc metals. The source truncation model is found to agree with the observed trends in strength with size once the change in Burgers vector and bulk strength are taken into account.

Type
Articles
Copyright
Copyright © Materials Research Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

Greer, J. R. and De Hosson, J. T. M., Progress in Materials Science 56 (6), 654-724 (2011).CrossRefGoogle Scholar
Lee, S. W. and Nix, W. D., Philos. Mag. 92 (10), 1238-1260 (2012).CrossRefGoogle Scholar
Bolz, R. E. and Tune, G. L., CRC Handbook of Tables for Applied Engineering Science. (CRC Press, Cleveland, Ohio, USA, 1973).Google Scholar
Schneider, A. S., Kaufmann, D., Clark, B. G., Frick, C. P., Gruber, P. A., Mönig, R., Kraft, O. and Arzt, E., Physical Review Letters 103 (10), Art. No. 105501 (2009).CrossRefGoogle Scholar
Schneider, A., Frick, C., Arzt, E., Clegg, W. and Korte, S., Philos. Mag. Lett. 93, 331-338 (2013).CrossRefGoogle Scholar
Moser, B., Wasmer, K., Barbieri, L. and Michler, J., Journal of Materials Research 22 (4), 1004-1011 (2007).CrossRefGoogle Scholar
Östlund, F., Rzepiejewska-Malyska, K., Leifer, K., Hale, L. M., Tang, Y., Ballarini, R., Gerberich, W. W. and Michler, J., Advanced Functional Materials 19 (15), 2439-2444 (2009).CrossRefGoogle Scholar
Korte, S. and Clegg, W. J., Philos. Mag. 91 (7-9), 1150-1162 (2011).CrossRefGoogle Scholar
Walter, C., Wheeler, J. M., Barnard, J. S., Raghavan, R., Korte-Kerzel, S., Gille, P., Michler, J. and Clegg, W. J., Acta Materialia 61 (19), 7189-7196 (2013).CrossRefGoogle Scholar
Soler, R., Molina-Aldareguia, J. M., Segurado, J., Llorca, J., Merino, R. I. and Orera, V. M., International Journal of Plasticity 36 (0), 50-63 (2012).CrossRefGoogle Scholar
Zou, Y. and Spolenak, R., Philos. Mag. Lett. 93 (7), 431-438 (2013).CrossRefGoogle Scholar
Abad, O. T., Wheeler, J. M., Michler, J., Schneider, A. S. and Arzt, E., Acta Materialia 103, 483494 (2016).CrossRefGoogle Scholar
Lee, S.-W. and Nix, W. D., Philos. Mag. 92 (10), 1238-1260 (2012).CrossRefGoogle Scholar
Parthasarathy, T. A., Rao, S. I., Dimiduk, D. M., Uchic, M. D. and Trinkle, D. R., Scripta Materialia 56 (4), 313-316 (2007).CrossRefGoogle Scholar
Soler, R., Wheeler, J. M., Chang, H.-J., Segurado, J., Michler, J., Llorca, J. and Molina-Aldareguia, J. M., Acta Materialia 81 (0), 50-57 (2014).CrossRefGoogle Scholar
Zou, Y. and Spolenak, R., Philos. Mag. 95 (16-18), 1795-1813 (2015).CrossRefGoogle Scholar
Zou, Y., Ma, H. and Spolenak, R., Nature Communications 6, 7748 (2015).CrossRefGoogle Scholar
Kedjar, B., Thilly, L., Demenet, J.-L. and Rabier, J., Acta Materialia 58 (4), 1426-1440 (2010).CrossRefGoogle Scholar
Kedjar, B., Thilly, L., Demenet, J.-L. and Rabier, J., Acta Materialia 58 (4), 1418-1425 (2010).CrossRefGoogle Scholar
Wheeler, J. M., Thilly, L., Morel, A., Taylor, A. A., Montagne, A., Ghisleni, R. and Michler, J., Acta Materialia 106, 283-289 (2016).CrossRefGoogle Scholar
Wheeler, J. M. and Michler, J., Review of Scientific Instruments 84 (4), 045103 (2013).CrossRefGoogle Scholar
Wheeler, J. M., Brodard, P. and Michler, J., Philos. Mag. 92 (25-27), 3128-3141 (2012).CrossRefGoogle Scholar
Korte, S. and Clegg, W. J., Scripta Materialia 60 (9), 807-810 (2009).CrossRefGoogle Scholar
Wheeler, J. M., Raghavan, R. and Michler, J., Materials Science and Engineering: A 528 (29-30), 87508756 (2011).CrossRefGoogle Scholar
Thilly, L., Ghisleni, R., Swistak, C. and Michler, J., Philos. Mag. 92 (25-27), 3315-3325 (2012).CrossRefGoogle Scholar
Csikor, F. F., Motz, C., Weygand, D., Zaiser, M. and Zapperi, S., Science 318 (5848), 251-254 (2007).CrossRefGoogle Scholar
Zaiser, M., Schwerdtfeger, J., Schneider, A., Frick, C., Clark, B. G., Gruber, P. and Arzt, E., Philos. Mag. 88 (30-32), 3861-3874 (2008).CrossRefGoogle Scholar
Chan, P. Y., Tsekenis, G., Dantzig, J., Dahmen, K. A. and Goldenfeld, N., Physical review letters 105 (1), 015502 (2010).CrossRefGoogle Scholar
Jennings, A. T., Li, J. and Greer, J. R., Acta Materialia 59 (14), 5627-5637 (2011).CrossRefGoogle Scholar
Derlet, P. and Maaß, R., Modelling and Simulation in Materials Science and Engineering 21 (3), 035007 (2013).CrossRefGoogle Scholar
Uchic, M. D., Dimiduk, D. M., Florando, J. N. and Nix, W. D., Science 305 (5686), 986-989 (2004).CrossRefGoogle Scholar
Shan, Z. W., Mishra, R. K., Syed Asif, S. A., Warren, O. L. and Minor, A. M., Nat Mater 7 (2), 115-119 (2008).CrossRefGoogle Scholar
Oh, S. H., Legros, M., Kiener, D. and Dehm, G., Nature Materials 8 (2), 95-100 (2009).CrossRefGoogle Scholar
Bei, H., Shim, S., George, E., Miller, M., Herbert, E. and Pharr, G., Scripta Materialia 57 (5), 397-400 (2007).CrossRefGoogle Scholar
Uchic, M. D., Shade, P. A. and Dimiduk, D. M., Annual Review of Materials Research 39, 361-386 (2009).CrossRefGoogle Scholar
Lowry, M., Kiener, D., LeBlanc, M., Chisholm, C., Florando, J., Morris, J. Jr and Minor, A., Acta Materialia 58 (15), 5160-5167 (2010).CrossRefGoogle Scholar
Zhu, T. and Li, J., Progress in Materials Science 55 (7), 710-757 (2010).CrossRefGoogle Scholar
Zhu, T., Li, J., Samanta, A., Leach, A. and Gall, K., Physical Review Letters 100 (2), 025502 (2008).CrossRefGoogle Scholar
Wheeler, J., Thilly, L., Morel, A., Taylor, A., Montagne, A., Ghisleni, R. and Michler, J., Acta Materialia 106, 283-289 (2016).CrossRefGoogle Scholar