Skip to main content Accessibility help
×
Home

Designing Block Copolymers for Nanolithography using Mesoscale Modeling: Line-Space Graphoepitaxy

  • Valeriy V. Ginzburg (a1), Phillip D. Hustad (a2), Dan B. Millward (a2) and Peter Trefonas (a2)

Abstract

Directed self-assembly (DSA) of block copolymers is a promising alternative nanolithographic technology aimed at producing sub-40 nm patterns. One important opportunity for DSA is the creation of periodic arrays of lines and spaces. The two most common methods for line-space applications are chemoepitaxy (typically using a lamella-forming PS-b-PMMA diblock) and graphoepitaxy (typically using cylinder-forming block copolymers with a Si-containing minority block). Mesoscale modeling, such as Self-Consistent Field Theory (SCFT), has by now become an important tool in formulation screening and predicting polymer morphologies and defect types and probabilities. Here, we use SCFT to study the morphology of cylinder-forming PS-b-PDMS diblocks in rectangular trenches with grafted PS-brushes. The targeted morphology is 2 cylinders per trench (3X multiplication). We compute phase diagrams and determine equilibrium morphologies as a function of brush thickness and guiding weir height. Using those equilibrium morphologies as starting points, we also compute structures and free energies of typical defects, including dislocation and disclination dipoles, broken lines, and bridges. The predicted defect structures and probabilities are in a reasonable qualitative agreement with recent experimental results.

Copyright

Corresponding author

References

Hide All
1 Nealey, P. and Gronheid, R. (eds), Directed Self-assembly of Block Co-polymers for Nano-manufacturing. (Woodhead Publishing, Cambridge, 2015).
2 Albert, J. N. L. and Epps, T. H., Materials Today 13 (6), 2433 (2010).
3 Ji, S., Wan, L., Liu, C.-C., and Nealey, P. F., Progress in Polymer Science (2015), doi:10.1016/j.progpolymsci.2015.10.006.
4 Bates, F. S. and Fredrickson, G. H., Physics today 52 (2), 3238 (1999).
5 Hamley, I. W., The physics of block copolymers. (Oxford University Press New York, 1998).
6 Ginzburg, V. V., Weinhold, J. D., and Trefonas, P., Journal of Polymer Science Part B: Polymer Physics 53, 9095 (2015).
7 Ginzburg, V. V., Weinhold, J. D., Hustad, P. D., Trefonas, P., Kim, B., Laachi, N., and Fredrickson, G. H., "4 - Field-theoretic simulations and self-consistent field theory for studying block copolymer directed self-assembly", in Directed Self-assembly of Block Co-polymers for Nano-manufacturing, edited by Nealey, Paul and Gronheid, R. (Woodhead Publishing, 2015), pp. 6795.
8 Latypov, A. and Coskun, T. H., "9 - The inverse directed self-assembly problem", in Directed Self-assembly of Block Co-polymers for Nano-manufacturing, edited by Nealey, Paul and Gronheid, R. (Woodhead Publishing, 2015), pp. 235255.
9 Morita, H., SPIE Advanced Lithography, 90492O-90492O-90498, (2014).
10 Ye, X., Edwards, B. J., and Khomami, B., Macromolecular rapid communications 35(7), 702707 (2014).
11 Nagpal, U., Muller, M., Nealey, P. F., and de Pablo, J. J., Acs Macro Lett 1 (3), 418422 (2012).
12 Detcheverry, F. A., Nealey, P. F., and de Pablo, J. J., Macromolecules 43 (15), 64956504 (2010).
13 Detcheverry, F. A., Liu, G. L., Nealey, P. F., and de Pablo, J. J., Macromolecules 43 (7), 34463454 (2010).
14 Millward, D. B., Lugani, G. S., Khurana, R., Light, S. L., Niroomand, A., Hustad, P. D., Trefonas, P., Chang, S.-w., Lee, C. N., and Quach, D., SPIE Advanced Lithography, 90540M-90514, (2014).
15 Kim, B., Laachi, N., Delaney, K. T., and Fredrickson, G. H., SPIE Advanced Lithography, 90491D-90491D-90499, (2014).
16 Kim, B., Laachi, N., Delaney, K. T., Carilli, M., Kramer, E. J., and Fredrickson, G. H., Journal of Applied Polymer Science (2014), DOI: 10.1002/app.40790.
17 Shi, A.-C. and Li, B., Soft Matter 9 (5), 13981413 (2013).
18 Iwama, T., Laachi, N., Kim, B., Carilli, M., Delaney, K. T., and Fredrickson, G. H., Macromolecules 48 (4), 12561261 (2015).
19 Fredrickson, G., The equilibrium theory of inhomogeneous polymers. (Oxford University Press, 2006).
20 Fredrickson, G. H., Ganesan, V., and Drolet, F., Macromolecules 35 (1), 1639 (2002).
21 Millward, D. B., Lugani, G. S., Light, S. L., Niroomand, A., Hustad, P. D., Trefonas, P., Quach, D., and Ginzburg, V. V., SPIE Advanced Lithography, 942304–942312, (2015).
22 Nose, T., Polymer 36 (11), 22432248 (1995).
23 Sills, S., Millward, D. B., and Malshe, R., Abstr Pap Am Chem S, (2010).
24 Izumi, K., Laachi, N., Man, X., Delaney, K. T., and Fredrickson, G. H., SPIE Advanced Lithography, 904922-904922-904927, (2014).
25 Ginzburg, V. V., Weinhold, J. D., Hustad, P. D., and Trefonas, P. III, J Photopolym Sci Tec 26 (6), 817823 (2013).

Keywords

Designing Block Copolymers for Nanolithography using Mesoscale Modeling: Line-Space Graphoepitaxy

  • Valeriy V. Ginzburg (a1), Phillip D. Hustad (a2), Dan B. Millward (a2) and Peter Trefonas (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed