Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T01:16:21.227Z Has data issue: false hasContentIssue false

Design of Porous Metal-Organic Frameworks for Adsorption Driven Thermal Batteries

Published online by Cambridge University Press:  15 February 2017

Daiane Damasceno Borges*
Affiliation:
Applied Physics Department, University of Campinas - UNICAMP, Campinas-SP 13083-959, Campinas-SP, Brazil
Guillaume Maurin
Affiliation:
Institut Charles Gerhardt Montpellier UMR CNRS 5253, Université Montpellier 2, 34095 Montpellier cedex 05, France
Douglas S. Galvão
Affiliation:
Applied Physics Department, University of Campinas - UNICAMP, Campinas-SP 13083-959, Campinas-SP, Brazil
*

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Thermal batteries based on a reversible adsorption/desorption of a working fluid (water, methanol, ammonia) rather than the conventional vapor compression is a promising alternative to exploit waste thermal energy for heat reallocation. In this context, there is an increasing interest to find novel porous solids able to adsorb a high energy density of working fluid under low relative vapor pressure condition combined with an easy ability of regeneration (desorption) at low temperature, which are the major requirements for adsorption driven heat pumps and chillers. The porous crystalline hybrid materials named Metal–Organic Frameworks (MOF) represent a great source of inspiration for sorption based-applications owing to their tunable chemical and topological features associated with a large variability of pore sizes. Recently, we have designed a new MOF named MIL-160 (MIL stands for Materials of Institut Lavoisier), isostructural to CAU-10, built from the assembly of corner sharing aluminum chains octahedra AlO4(OH)2 with the 2,5-furandicarboxylic linker substituting the pristine organic linker, 1,4-benzenedicarboxylate. This ligand replacement strategy proved to enhance both the hydrophilicity of the MOF and its amount of water adsorbed at low p/p0. This designed solid was synthesized and its chemical stability/adsorption performances verified. Here, we have extended this study by incorporating other polar heterocyclic linkers and a comparative computational study of the water adsorption performances of these novel structures has been performed. To that purpose, the cell and geometry optimizations of all hypothetical frameworks were first performed at the density functional theory level and their water adsorption isotherms were further predicted by using force-field based Grand-Canonical Monte Carlo simulations. This study reveals the ease tunable water affinity of MOF for the desired application.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

References

REFERENCES

Henninger, S. K., Habib, H. A., Janiak, C., J. Am. Chem. Soc. 131, 2776 (2009)Google Scholar
de Lange, M. F., Verouden, K. J. F. M., Vlugt, T. J. H., Gascon, J., Kapteijn, F., Chem. Rev. 115(22), 12205 (2015)CrossRefGoogle Scholar
Metcalf, S. J., Tamainot-Telto, Z., Critoph, R. E., Appl. Therm. Eng. 31, 2197 (2011)Google Scholar
Canivet, J., Fateeva, A., Guo, Y., Coasnecd, B., Farrusseng, D., Chem. Soc. Rev. 43, 55945617 (2014)CrossRefGoogle Scholar
Devic, T., Serre, C., Chem. Soc. Rev. 43, 6097 (2014)Google Scholar
Fröhlich, D., Henninger, S. K., Janiak, C., Dalton Trans. 43, 15300 (2014)Google Scholar
De Lange, M. F, Ottevanger, C. P., Wiegman, M., Vlugt, T. J. H., Gascon, J., Kapteijn, F., CrystEngComm, 17, 281 (2014)Google Scholar
Jeremias, F., Fröhlich, D., Janiak, C., Henninger, S. K., RSC Adv. 4, 24073 (2014)Google Scholar
Reinsch, H., van der Veen, M. A., Gil, B., Marszalek, B., Verbiest, T., de Vos, D., and Stock, N., Chem. Mater. 25(1), 1726 (2013)Google Scholar
Cadiau, A. et. al. Advanced Material 27(32), 47754780 (2015)Google Scholar
Lippert, G., Hutter, J., Parrinello, M., Molec. Phys.. 92(3), 477487 (1997)Google Scholar
Perdew, J. P., Burke, K., Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996)Google Scholar
Mulliken, R. S., J. Chem. Phys., 23, 1833 (1955)Google Scholar
Delley, B., J. Chem. Phys. 92, 508517 (1990)Google Scholar
Yang, Q., Zhong, C., J. Phys. Chem. B 110, 17776 (2006)CrossRefGoogle Scholar
Abascal, J. L. F., Vega, C. A., J. Chem. Phys. 123, 234505 (2005)CrossRefGoogle Scholar
Rappé, A. K., Casewit, J., Colwell, K. S., Goddard, W. A. III, Skiff, W. M., J. Am. Chem. Soc. 114, 10024 (1992)CrossRefGoogle Scholar
Yang, Q Y., Vaesen, S., Vishnuvarthan, M., Ragon, F., Serre, C., Vimont, A., Daturi, M., De Weireld, G., Maurin, G., J. of Mat. Chem. 22, 10210 (2012)Google Scholar
Ibarra, I. A., Yang, S., Lin, X., Blake, A. J., Rizkallah, P. J., Nowell, H., Allan, D. R., Champness, N. R., Hubberstey, P., Schrö der, M., Chem. Commun., 47, 8304 (2011)Google Scholar
Neimark, A. V., Ravikovitch, P. I., Langmuir 13, 51485160 (1997)CrossRefGoogle Scholar