Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T16:17:50.476Z Has data issue: false hasContentIssue false

Contrast Differences Between Nitrogen and Helium Ion Induced Secondary Electron Images Beyond Instrument Effects

Published online by Cambridge University Press:  10 January 2018

Marek E. Schmidt*
Affiliation:
School of Material Science, Japan Advanced Institute of Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
Shinichi Ogawa
Affiliation:
Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba305-8569, Japan
Hiroshi Mizuta
Affiliation:
School of Material Science, Japan Advanced Institute of Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan Hitachi Cambridge Laboratory, Hitachi Europe Ltd., J. J. Thomson Avenue,CB3 0HE Cambridge, United Kingdom
Get access

Abstract

The gas field ion source (GFIS) is able to generate tightly focused ion beams, which can be used to image or modify a specimen. Among the beam species, helium offers extremely high resolution, however, low sputter yield and sub-surface bubble formation are limiting factors in some applications. Therefore, heavier ions such as neon or nitrogen are used as well. In addition to being a suitable choice for lithographic mask editing, secondary electron (SE) generation by nitrogen beams has been recently shown to be affected by certain types of samples, providing additional contrast compared to helium ions. Here, we report our progress on the study of SE imaging differences between the nitrogen ion microscopy (N2IM) and helium ion microscopy (HIM). SE images of two nano-patterned samples comprising insulator, metal and carbon regions have been imaged by nitrogen and helium ions in two fundamentally different GFIS microscopes. The results corroborate previous reports of significant contrast differences in certain samples caused by the different ion species.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ward, B. W., Notte, J. A., Economou, N. P., J. Vac. Sci. Technol. B 2006, 24, 2871.CrossRefGoogle Scholar
Morgan, J., Notte, J., Hill, R., Ward, B., Microsc. Today 2006, 14, 24.CrossRefGoogle Scholar
Hlawacek, G., Veligura, V., van Gastel, R., Poelsema, B., J. Vac. Sci. Technol. B 2014, 32, 020801.Google Scholar
Livengood, R. H., Tan, S., Hallstein, R., Notte, J., McVey, S., Faridur Rahman, F. H. M., Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 2011, 645, 136.CrossRefGoogle Scholar
Matsubara, S., Shichi, H., Kawanami, Y., Hashizume, T., Microsc. Microanal. 2016, 22, 614.CrossRefGoogle Scholar
Aramaki, F., Kozakai, T., Matsuda, O., Yasaka, A., Yoshikawa, S., Kanno, K., Miyashita, H., Hayashi, N., in Proc SPIE 9235, Monterey, USA, 2014, p. 92350F–92350F–8.Google Scholar
Lai, W.-C., Lin, C.-Y., Chang, W.-T., Li, P.-C., Fu, T.-Y., Chang, C.-S., Tsong, T. T., Ing-Shouh Hwang, Nanotechnology 2017, 28, 255301.Google Scholar
Shichi, H., Matsubara, S., Hashizume, T., Jpn. J. Appl. Phys. 2017, 56, 06GC01.Google Scholar
Livengood, R., Tan, S., Greenzweig, Y., Notte, J., McVey, S., J. Vac. Sci. Technol. B 2009, 27, 3244.Google Scholar
Aramaki, F., Ogawa, T., Matsuda, O., Kozakai, T., Sugiyama, Y., Oba, H., Yasaka, A., Amano, T., Shigemura, H., Suga, O., in Proc SPIE 7969, San Jose, USA, 2011, p. 79691C–79691C–7.Google Scholar
Tan, S., Livengood, R., Shima, D., Notte, J., McVey, S., J. Vac. Sci. Technol. B 2010, 28, C6F15.CrossRefGoogle Scholar
Schmidt, M. E., Yasaka, A., Akabori, M., Mizuta, H., Microsc. Microanal. 2017, 23, 758.Google Scholar
Schmidt, M. E., Xu, C., Cooke, M., Mizuta, H., Chong, H. M. H., Mater. Res. Express 2014, 1, 025031.Google Scholar
Rahman, F. H. M., McVey, S., Farkas, L., Notte, J. A., Tan, S., Livengood, R. H., Scanning 2012, 34, 129.CrossRefGoogle Scholar
Schmidt, M. E., Zhang, X., Oshima, Y., The Anh, L., Yasaka, A., Kanzaki, T., Muruganathan, M., Akabori, M., Shimoda, T., Mizuta, H., J. Vac. Sci. Technol. B 2017, 35, 03D101.Google Scholar
Petrov, Y., Vyvenko, O., in Proc SPIE, 2011, p. 80360O–1–10.Google Scholar