Skip to main content Accessibility help

Comparison of band -fitting and Wannier-based model construction for WSe2

  • James Sifuna (a1) (a2) (a3), Pablo García-Fernández (a1), George S. Manyali (a4), George Amolo (a3) and Javier Junquera (a1)...


Transition metal dichalcogenide materials MX2 (M = Mo;W;X = S; Se) are being thoroughly studied due to their novel two-dimensional structure, that is associated with exceptional optical and transport properties. From a computational point of view, Density Functional Theory simulations perform very well in these systems and are an indispensable tool to predict and complement experimental results. However, due to the time and length scales where even the most efficient DFT implementations can reach today, this methodology suffers of stringent limitations to deal with finite temperature simulations or electron-lattice coupling when studying excitation states: the unit cells required to study, for instance, systems with thermal fluctuations or large polarons would require a large computational power. Multi-scale techniques, like the recently proposed Second Principles Density Functional Theory, can go beyond these limitations but require the construction of tight-binding models for the systems under investigation. In this work, we compare two such methods to construct the bands of WSe2. In particular, we compare the result of (i) Wannier-based model construction with (ii) the band fitting method of Liu et al.,[1] where the top of the valence band and the bottom of the conduction band are modeled by three bands symmetrized to have mainly Tungsten dz2, dxy and dx2-y2character. Our results emphasize the differences between these two approaches and how band fitting model construction leads to an overestimation of the localization of the real-space basis in a tight-binding representation.


Corresponding author


Hide All
1Liu, Gui-Bin, Shan, Wen-Yu, Yao, Yugui, Wang, Yao and Xiao, Di, Phys. Rev. B 88, 085433 (2013).
2Ross, Jason S., Wu, Sanfeng, Yu, Hongyi, Ghimire, Nirmal J., Jones, Aaron M., Grant, Aivazian, Yan, Jiaqiang, Mandrus, David G., Xiao, Di, Wang, Yao and Xu, Xiaodong, Nat Commun 4, 1474 (2013).
3SefaattinTongay, , Ataca, Jian Zhou Can, Lo, Kelvin, Matthews, Tyler S., Li, Jingbo, Je_rey, C. Grossman, JunqiaoWu, Nano Lett., 12, 11, 5576-5580 (2012).
4Zeng, Hualing, Liu, Gui-Bin, Dai, Junfeng, Yan, Yajun, Zhu, Bairen, He, Ruicong, Lu, Xie, Xu, Shijie, Chen, Xianhui,Wang, Yao and Cui, Xiaodong, Scienti_c Reports 3, 1608 (2010).
5Lin, Ming-Wei, Liu, Lezhang, Lan, Qing, Tan, Xuebin, Dhindsa, Kulwinder S, Zeng, Peng, Naik, Vaman M, Cheng, Mark MingCheng and Zhou, Zhixian, J. Phys. D: Appl. Phys. 45345102 (2012).
6Bao, Wenzhong, Cai, Xinghan, Kim, Dohun, Sridhara, Karthik & Fuhrer, Michael S., Appl. Phys. Lett. 102, 042104(2013).
7Larentis, Stefano, Fallahazad, Babak & Tutuc, Emanuel,Appl. Phys. Lett. 101, 223104 (2012).
8Luo, Xin, Zhao, Yanyuan, Zhang, Jun, Toh, Minglin, Kloc, Christian, QihuaXiong, & Quek, Su Ying, Phys. Rev. B,88, 195313 (2013).
9Rocha, Rafael de Alencar, Wiliam Ferreira da Cunhaand Luiz Antonio Ribeiro Jr., J. Mol. Modeling 25, 290 (2019).
10Giustino, Feliciano, Rev. Mod. Phys. 89, 015003 (2017).
11Slater, J. C. and Koster, G. F., Phys. Rev. 94, 1498 (1954).
12David Brown, Ian, Chem. 109, 12, 6858-6919 (2009).
13Giese, T. J. and York, D. M., TheorChem Acc. 131, 1145(2012).
14Spaek, J., Phys. Rev. B 37, 533 (1988).
15Zhong, W., Vanderbilt, David, and Rabe, K. M., Phys. Rev.B 52, 6301 (1995).
16Garcia-Fernandez, Pablo, Wojde, Jacek C., Jorge, Iiguez,and Junquera, Javier, Phys. Rev. B 93, 195137 (2016).
17C Wojde, Jacek, Hermet, Patrick, Ljungberg, Mathias P,Ghosez, Philippe and Jorge, iguez, J. Phys.: Condens. Matter 25 305401 (2013).
18Mosto_, A. A., Yates, J. R., Lee, Y.-S., Souza, I., Vanderbilt, D., and Marzari, N., Comput. Phys. Commun. 178, 685(2008).
19Soler, Jose M., Artacho, Emilio, Gale, Julian D., AlbertoGarcia, , Junquera, Javier, Ordejon, Pablo, SanchezPortal, Daniel, J. Phys.: Condens. Matter 14 2745 (2002).
20Nicola Marzari, , Mosto, Arash A., Jonathan, R. Yates, IvoSouza, and Vanderbilt, David, Rev. Mod. Phys. 84, 1419 (2012).
21Perdew, John P., Burke, Kieron, and Ernzerhof, Matthias, Phys. Rev. Lett. 78, 1396 (1997).
22Kleinman, Leonard and Bylander, D. M., Phys. Rev. Lett. 48, 1425 (1982).
23Troullier, N. and Martins, Jos Lus, Phys. Rev. B 43, 1993 (1991).
24Junquera, Javier, Paz, Oscar, Sanchez-Portal, Daniel, and Artacho, Emilio, Phys. Rev. B 64, 235111 (2001).
25Monkhorst, Hendrik J. and Pack, James D., Phys. Rev. B 13, 5188 (1976).
26Moreno, Juana and Soler, Jos_e M., Phys. Rev. B 45, 13891 (1992).
27SCALE-UP webpage (Accessed 4 February 2020)
28Bhattacharyya, Swastibrata and Singh, Abhishek K., Phys. Rev. B 86, 075454 (2012).


Comparison of band -fitting and Wannier-based model construction for WSe2

  • James Sifuna (a1) (a2) (a3), Pablo García-Fernández (a1), George S. Manyali (a4), George Amolo (a3) and Javier Junquera (a1)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed