Skip to main content Accessibility help

Comparative Study of Surface Energies of Native Oxides of Si(100) and Si(111) via Three Liquid Contact Angle Analysis

  • Saaketh R. Narayan (a1), Jack M. Day (a1), Harshini L. Thinakaran (a1), Nicole Herbots (a1) (a2), Michelle E. Bertram (a1) (a2), Christian E. Cornejo (a1) (a2), Timoteo C. Diaz (a1) (a2), Karen L. Kavanagh (a3), R. J. Culbertson (a1), Franscesca J. Ark (a1), Sukesh Ram (a1), Mark W. Mangus (a4) and Rafiqul Islam (a1) (a2)...


The effects of crystal orientation and doping on the surface energy, γT, of native oxides of Si(100) and Si(111) are measured via Three Liquid Contact Angle Analysis (3LCAA) to extract γT, while Ion Beam Analysis (IBA) is used to detect Oxygen. During 3LCAA, contact angles for three liquids are measured with photographs via the “Drop and Reflection Operative Program (DROP™). DROP™ removes subjectivity in image analysis, and yields reproducible contact angles within < ±1°. Unlike to the Sessile Drop Method, DROP can yield relative errors < 3% on sets of 20-30 drops. Native oxides on 5 x 1013 B/cm3 p- doped Si(100) wafers, as received in sealed, 25 wafer teflon boats continuously stored in Class 100/ISO 5 conditions at 24.5°C in 25% controlled humidity, are found to be hydrophilic. Their γT, 52.5 ± 1.5 mJ/m2, is reproducible between four boats from three sources, and 9% greater than γT of native oxides on n- doped Si(111), which averages 48.1 ± 1.6 mJ/m2 on four 4” Si(111) wafers. IBA combining 16O nuclear resonance with channeling detects 30% more oxygen on native oxides of Si(111) than Si(100). While γT should increase on thinner, more defective oxides, Lifshitz-Van der Waals interactions γLW on native oxides of Si(100) remain at 36 ± 0.4 mJ/m2, equal to γLW on Si(111), 36 ± 0.6 mJ/m2, since γLW arises from the same SiO2 molecules. Native oxides on 4.5 x 1018 B/cm3 p+ doped Si(100) yield a γT of 39 ± 1 mJ/m2, as they are thicker per IBA. In summary, 3LCAA and IBA can detect reproducibly and accurately, within a few %, changes in the surface energy of native oxides due to thickness and surface composition arising from doping or crystal structure, if conducted in well controlled clean room conditions for measurements and storage.


Corresponding author


Hide All
1.Kaur, G., Dwivedi, N., Zheng, X., Liao, B., Peng, Z., Danner, A., Stangl, R., Bhatia, C. S., IEEE J. Photovolt. 7, 1224 (2017).
2.Peng, W., Rupich, S. M., Shafiq, N., Gartstein, Y. N., Malko, A. V., Chabal, Y. J., Chem. Rev. 115, 12764 (2015).
3.Muller, D. A., Sorsch, T., Moccio, S., Baumann, F. H., Evans-Lutterodt, K., Timp, G., Nature 399, 758 (1999).
4.Kern, W. and Puotinen, D. A., RCA Rev. 31, 187 (1970).
5.Yablonovitch, E., Allara, D., Chang, C. C., Gmitter, T., Bright, T. B., Phys. Rev. Letts. 57, 249 (1986).
6.Higashi, G. S., Becker, R. S., Chabal, Y. J., Becker, A. J., Appl. Phys. Letts. 58, 1656 (1991).
7.Herbots, N., Shaw, J., Hurst, Q., Grams, M., Culbertson, R., Smith, D. J., Atluri, V., Zimmerman, P., Queeney, K., Matls. Sci. Eng. B 87, 303 (2001).
8.Royea, W. J., Juang, A., and Lewis, N. S., Appl. Phys. Letts. 77, 1988 (2000).
9.Tong, Q.-Y. and Gösele, U., Semiconductor Wafer Bonding (John Wiley, 1999, 1999).
10.Faibish, R. S., Yoshida, W., Cohen, Y., J. of Colloid & Interface Sci. 256, pp. 4350 (2002).
11.Matsushita, K., Monbara, T., Nakayama, K., Naganuma, H., Okuyama, S., Okuyama, K., Elec. Comm. Jap. II 84, 51 (2001).
12.Matsushita, K., Fujisawa, A., Ando, N., Kobayashi, H., Naganuma, H., Okuyama, S., and Okuyama, K., J. Electrochem. Soc. 148, G401 (2001).
13.Herbots, N., Xing, Q., Hart, M., Bradley, J. D., Sell, D. A., Culbertson, R. J., and Wilkens, B. J., Nucl. Inst. Meth. in Phys. Res. B 272, 330 (2012).
14.Mayer, M., Amer. Inst. Phys. Conf. Proceedings 475, p. 541 (1999).
15.Herbots, N., Culbertson, R. J., Bradley, J., Hart, M. A., Sell, D. A., Whaley, S. D., US Patent 9,018,077 Filed 2010 Granted 2015
16.Herbots, N., Whaley, S. D., Culbertson, R.J., Bennett-Kennett, R., Murphy, A., Bade, M., Farmer, S., Hudzeitz, B., US Patent N° 9,589,801 Filed 2012, Granted 2017
17.Herbots, N., Bradley, J.D., Shaw, J. M., Culbertson, R. J., Atluri, V., US Patent N° 7,851,365 Filed 2007 Granted December 12, 2010. (2011) See also: Herbots; Nicole Atluri; Vasudeva P. Bradley; James D., Swati; Banerjee, Hurst; Quinton B., Xiang; Jiong US Patent N° 6,613,677, Granted September 2, 2003 (2003)
18.Herbots, N., Islam, R., US Patents pending (2018)
19.Herbots, N., Islam, R., US Patents pending (2018)
20.Code available by contacting authors, via e-mail and , or
21.Cullen, P. A., Ph.D. Enhancement of initial stages of silicon oxidation with implanted dopants, Massachusetts Institute of Technology PhD Thesis (1991).
22.Good, R. J., van Oss, C. J., “The modern theory of contact angles and the hydrogen bond components of surface energies.” Modern approaches to wettability. Springer. pp. 127 (1992).
23.Atluri, V., Herbots, N., Dagel, D., Bhagvat, S., Whaley, S., Nucl. Instr. & Methods in Phys. Res. B Beam Interactions with Materials and Atoms 118(s 1–4):144150 (1997)
24.Cornejo, C., Bertram, M., Diaz, T., Herbots, N., Narayan, S., Day, J., Ark, F., Ram, S., Dhamdhere, A., Culbertson, R., Islam, R., Kavanagh, K., This Conference, submitted to MRS Advances (2018).
25.Deal, B.E. & Grove, A.S.. (1965). General Relationship for the Thermal Oxidation of Silicon. Journal of Applied Physics. 36. 37703778.
26.Gerlach, G., Maser, K., “A Self-Consistent Model for Thermal Oxidation of Silicon at Low Oxide Thickness,” Adv. in Conden. Matter Phy., vol. 2016, 2016.
27.Pasquarello, A., Hybertsen, M. S., Car, R., “Atomic dynamics during silicon oxidation,” Fundamental Aspects of Silicon Oxidation, Chabal, Y. J., Ed., vol. 46, Springer Series in Mat. Sci., ch. 6, pp. 107125, Springer, Berlin, Germany, 2001.
28.Bradley, J.D., A new heteroepitaxial silicon dioxide nanophase on OH-(1X1) silicon (100) identified via 3.05 MEV ion channeling and the new 3-D multistring code, Arizona State University PhD Thesis.
29.Whaley, S., Nano-Bonding of Silicon Oxides-based surfaces at Low Temperature: Bonding Interphase Modeling via Molecular Dynamics and Characterization of Bonding Surfaces Topography, Hydro-affinity and Free Energy, Arizona State University PhD Thesis.
30.Bennett-Kennett, R., Wet NanoBonding™: Catalyzing Molecular Cross-Bridges and Interphases Between Nanoscopically Smoothed Si-Based Surfaces and Tailoring Surface Energy Components, Arizona State University B.Sc. Thesis.
31.Davis, E., Wet NanobondingTM of Semiconducting Surfaces Optimized via Surface Energy Modification Using Three Liquid Contact Angle Analysis as a Metrology, Arizona State University B.Sc. Thesis.
32.Mahajan, S., Rozgonyi, G. A., and Brazen, P., Appl. Phys. Lett. 30, 73 (1977).
33.Ponce, F. A., Yamashita, T., Hahn, S., Appl. Phys. Lett. 43, 11 (1983).
34.Queeney, K.T., Herbots, N., Shaw, J.M., Atluri, V., Chabal, Y.J., Infrared spectroscopic analysis of an ordered Si/SiO2 interface, Appl. Phys. Lett. 84 (2004) 493495.
35.Shaw, J., Herbots, N., Hurst, Q. B., Bradley, D., Culbertson, R. J., “Atomic displacement free interfaces and atomic registry in SiO2/(1x1) Si(100).” Jour. of App. Phys. 100, 10 (2006).
36.Shaw, J., Ordered interfaces and atomic registry of Silicon(100) surfaces and silicon dioxide, Arizona State University PhD Thesis.
37.Bradley, J., Herbots, N., Culbertson, R. J., Shaw, J., Atluri, V., “A New 3D Multistring Code to Identify Compound Oxide Nanophase with Ion Channeling,” Mat. Res. Soc. Proc. Vol. 996 (2007).
38.PubChem Open Chemistry Database, retrieved May 17, 2018


Comparative Study of Surface Energies of Native Oxides of Si(100) and Si(111) via Three Liquid Contact Angle Analysis

  • Saaketh R. Narayan (a1), Jack M. Day (a1), Harshini L. Thinakaran (a1), Nicole Herbots (a1) (a2), Michelle E. Bertram (a1) (a2), Christian E. Cornejo (a1) (a2), Timoteo C. Diaz (a1) (a2), Karen L. Kavanagh (a3), R. J. Culbertson (a1), Franscesca J. Ark (a1), Sukesh Ram (a1), Mark W. Mangus (a4) and Rafiqul Islam (a1) (a2)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed