Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T01:01:10.742Z Has data issue: false hasContentIssue false

Collagen and Hydroxyapatite Composite Membranes as Drug-Carrying Support for Biomedical Applications

Published online by Cambridge University Press:  24 January 2017

Daichi Kajiwara*
Affiliation:
Department of Material Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
Toshiyuki Ikoma
Affiliation:
Department of Material Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
Get access

Abstract

Medical products comprised of devices and drugs have been known as a combination product. The biodegradable collagen (Col) sponges impregnated with recombinant human bone morphogenetic protein can make bone formation hasten. It is expected further features by a combination of various growth factors and artificial bone materials. The binding properties of such factors to Col and hydroxyapatite (HAp) have not been elucidate to achieve a controlled release. In this study, we investigated artificial periosteum-like membranes made from tilapia fish Col and HAp composites as a drug carrying support. The Col-HAp composites with three different compositions in weight ratio of 2:8, 5:5 and 8:2 were made and crosslinked by irradiation of gamma-ray in wet condition. The tensile strengths of the membranes in wet or dry were depended on the compositions; however the strengths of the membranes in wet were apparently weaker at 1/10 or less than those in dry at a maximum 90 MPa. The adsorption ability of proteins, bovine serum albumin (BSA) or lysozyme (LSZ), on the membranes exhibited different tendency; the membranes including higher weight ratio of HAp adsorbed BSA rather than LSZ. These results indicated that the artificial Col-HAp membranes would be the suitable materials for biomedical device as combination products.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Myeroff, C., Archdeacon, M., J. Bone Joint Surg. Am. 93, 22272236 (2011).Google Scholar
Perry, C.R., Clin. Orthop. Rel. Res. 360, 7186 (1999).Google Scholar
Dorozhkin, S.V., Materials 6, 38403942 (2013).Google Scholar
Sheikh, Z., Sima, C., and Glogauer, M., Materials 8, 29532993 (2015).Google Scholar
Gelse, K., Po, E., and Aigner, T., Adv. Drug Deliv. Rev. 55, 15311546 (2003).Google Scholar
Walters, B.D., Stegemann, J.P., Acta Biomater. 10, 14881501 (2014).Google Scholar
Wang, W., Zhang, Y., Ye, R., and Ni, Y., Int. J. Biol. Macromol. 81, 920925 (2015).Google Scholar
Kikuchi, M., Biol. Pharm. Bull. 36, 16661669 (2013).Google Scholar
Zhao, H., Wu, J., Zhu, J., Xiao, Z., He, C., Shi, H., Li, X., Yang, S., Xiao, J., Biomed. Res. Int. (2015).Google Scholar
Taniyama, T., Masaoka, T., Yamada, T., Wei, X., Yasuda, H., Yoshii, T., Okawa, A., Artif. Organs 39, 529535 (2015).Google Scholar
Maehara, H., Sotome, S., Yoshii, T., Torigoe, I., Kawasaki, Y., Sugata, Y., Yuasa, M., Hirano, M., Mochizuki, N., Kikuchi, M., Shinomiya, K., Okawa, A., Orthop. Res. Soc. 2, 677686 (2010).Google Scholar
Prabhakaran, M.P., Venugopal, J., Ramakrishna, S., Acta Biomater. 5, 28842893 (2009).Google Scholar
Ribeiro, N., Sousa, S.R., Van Blitterswijk, C.A., Moroni, L., Monteiro, F.J., Biofabrication 6, (2014).Google Scholar
Song, J., Kim, H., Kim, H., Biomed, J.. Mater. Res. 83B, 248257 (2007).Google Scholar
Chen, G., Ushida, T., Tateishi, T., Mater. Sci. Eng. C 17, 6369 (2001).CrossRefGoogle Scholar
Tamagawa, H., Tenkumo, T., Sugaya, T., Kawanami, M., Appl. Surf. Sci. 262, 140145 (2012).Google Scholar
Ikoma, T., Kobayashi, H., Tanaka, J., Walsh, D., Mann, S., Int. J. Biol. Macromol. 32, 199204 (2003).Google Scholar
Matsumoto, R., Uemura, T., Xu, Z., Yamaguchi, I., Ikoma, T., Tanaka, J., J. Biomed Mater. Res. A 103, 25312539 (2015).Google Scholar
Hsu, H., Uemura, T., Yamaguchi, I., Ikoma, T., Tanaka, J., J. Biosci. Bioeng. 122, 219225 (2016).CrossRefGoogle Scholar
Yunoki, S., Ikoma, T., Tanaka, J., Mater. Char. 61, 907911 (2010).CrossRefGoogle Scholar
Sugiura, H., Yunoki, S., Kondo, E., Ikoma, T., Tanaka, J., Yasuda, K., Biomater, J.. Sci. Polym. Ed. 5063, (2016).Google Scholar
Elango, J., Zhang, J., Bao, B., Palaniyandi, K., Wang, S., Wu, W., Shakila, J., Int. J. Biol. Macromol. 91, 5159 (2016).CrossRefGoogle Scholar
Ikoma, T., Yamazaki, A., Nakamura, S., Akao, M., J. Solid State Chem. 144(2), 272276 (1999).Google Scholar
Cohn, D., Salomon, A.H., Biomaterials 26, 22972305 (2005).Google Scholar
Mcgarvey, K., Lee, J.M., Boughner, D.R., Biomaterials 5, 109117 (1984).Google Scholar