Skip to main content Accessibility help

Chemical Vapor-Deposited Carbon Nanotubes as Electrode Material for Supercapacitor Applications

  • Ganesh Sainadh Gudavalli (a1) (a2), James N. Turner (a3) and Tara P. Dhakal (a1) (a2)


We report the capacitance of entangled carbon nanotubes (CNTs) synthesized on flexible carbon fabric via water-assisted chemical vapor deposition. The CNTs were grown at atmospheric pressure with iron (Fe) as the catalyst, ethylene (C2H4) and 5%/95% H2/Ar as precursor gasses, and aluminum oxide as a buffer/barrier layer. The effect of the catalyst thickness (5 and 10 nm) on the specific capacitance was studied. The capacitance behavior of CNTs was evaluated by cyclic voltammetry measurements via a three-electrode system. The highest specific capacitance, approximately 56 F/g, was obtained for electrodes with 5nm Fe thickness. A nearly rectangular shaped cyclic voltammogram was exhibited for the CNTs grown on the carbon fabric. A specific power density of 0.012 KW/Kg and specific energy density 0.15 Wh/Kg were calculated from the galvanic charge/discharge (CD) curves. In addition, electrochemical impedance spectroscopy (EIS) revealed a characteristic supercapacitive behavior with a low equivalent series resistance of 7 Ωcm2.


Corresponding author

*Corresponding Author:


Hide All
1. Virmalwar, N., Nsti.Org 563 (2007).
2. Pan, H., Li, J., and Feng, Y.P., Nanoscale Res. Lett. 5, 654 (2010).
3. Frackowiak, E., Phys. Chem. Chem. Phys. 9, 1774 (2007).
4. Zhai, Y., Dou, Y., Zhao, D., Fulvio, P.F., Mayes, R.T., and Dai, S., Adv. Mater. 23, 4828 (2011).
5. Zhao, X., Sanchez, B.M., Dobson, P.J., and Grant, P.S., Nanoscale 3, 839 (2011).
6. Niu, C., Sichel, E.K., Hoch, R., Moy, D., and Tennent, H., Appl. Phys. Lett. 70, 1480 (1997).
7. Gao, Y., Pandey, G.G.P., Turner, J., Westgate, C.R., and Sammakia, B., Nanoscale Res. ... 7, 651 (2012).
8. Gao, Y., Adusumilli, S.P., Turner, J., Lesperance, L., Westgate, C., and Sammakia, B., J. Nanosci. Nanotechnol. 12, 7777 (2012).
9. Thostenson, E.T., Li, W.Z., Wang, D.Z., Ren, Z.F., and Chou, T.W., J. Appl. Phys. 91, 6034 (2002).
10. Zhao, Z.-G., Ci, L.-J., Cheng, H.-M., and Bai, J.-B., Carbon N. Y. 43, 663 (2005).
11. Yi, S., Fan, Z., Wu, C., and Chen, J., Carbon N. Y. 46, 378 (2008).
12. De Riccardis, M.F., Carbone, D., Makris, T.D., Giorgi, R., Lisi, N., and Salernitano, E., Carbon N. Y. 44, 671 (2006).
13. Gao, Y., Pandey, G.P., Turner, J., Westgate, C., and Sammakia, B., Phys. Scr. 86, 65603 (2012).
14. Mkhondo, N.B., Magadzu, T., Sciences, M., and Africa, S., 9, 1331 (2014).
15. Liu, C.C., Tsai, D.S., Chung, W.H., Li, K.W., Lee, K.Y., and Huang, Y.S., J. Power Sources 196, 5761 (2011).
16. K, . (2013, December 16). Linear Sweep and Cyclic Voltametry: The Principles. Accessed February 15, 2017, from
17. Zhang, X., Shi, W., Zhu, J., Zhao, W., Ma, J., Mhaisalkar, S., Maria, T.L., Yang, Y., Zhang, H., Hng, H.H., and Yan, Q., Nano Res. 3, 643 (2010).
18. Cao, X., Shi, Y., Shi, W., Lu, G., Huang, X., Yan, Q., Zhang, Q., and Zhang, H., Small 7, 3163 (2011).

Chemical Vapor-Deposited Carbon Nanotubes as Electrode Material for Supercapacitor Applications

  • Ganesh Sainadh Gudavalli (a1) (a2), James N. Turner (a3) and Tara P. Dhakal (a1) (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed