Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-27T04:24:44.782Z Has data issue: false hasContentIssue false

Characterization of inclusions and second-phase particles in high-Mn TWIP steels microalloyed with Ti, Ti/B, Nb, V and Mo, in as-solutioned condition

Published online by Cambridge University Press:  22 October 2020

D. Mijangos
Affiliation:
Universidad Michoacana de San Nicolás de Hidalgo, Departamento de Metalurgia Mecánica, México. Email: mijangos727@gmail.com, imejia@umich.mx
I. Mejía
Affiliation:
Universidad Michoacana de San Nicolás de Hidalgo, Departamento de Metalurgia Mecánica, México. Email: mijangos727@gmail.com, imejia@umich.mx
J. M. Cabrera
Affiliation:
Universidad Michoacana de San Nicolás de Hidalgo, Departamento de Metalurgia Mecánica, México. Email: mijangos727@gmail.com, imejia@umich.mx Universitat Politècnica de Catalunya, Departamento de Ciencia e Ingeniería de Materiales, Spain
Get access

Abstract

In recent years there has been an increase in the field of research of advanced steels that have excellent mechanical properties combining high strength with excellent ductility. Within this range of advanced steels are the stable austenitic phase steels at room temperature of twinning induced plasticity known as TWIP. An important aspect to highlight about TWIP steels is their addition with different microalloying elements, generally less than 0.20 wt. %, which are forming precipitated phases such as carbides, nitrides and carbonitrides, and directly or indirectly control and/or modify microstructure and mechanical properties in these steels. Microalloying elements can cause a higher degree of hardening due to the formation of precipitates and grain refinement. The present research work studies the inclusions and second-phase particles formed in Fe–21Mn–1.3Si–1.6Al TWIP steels microalloyed with Ti, Nb, V, Mo and Ti/B in as-solution condition. TWIP steels melted in induction furnace were homogenized and hot-rolled at 1200 °C with reduction of 60 %. Subsequently, rolled plates were solubilized at 1100 °C followed by water quench. Thermodynamics-based predictions of inclusions and second-phases of different TWIP steels were carried out using JMatPro®V.9.1.2. Metallographic characterization was carried out by light optical and scanning electron microscopies (LOM, SEM), while second-phase particles characterization was performed using energy dispersion spectroscopy (SEM-EDS). Also, Vickers microhardness tests were carried out in accordance to ASTM E92 standard. In general, results showed the formation of inclusions of AlN and MnS at higher temperatures, which act as nuclei points for the precipitation particles of each type of microalloying element (TiN, TiC, Nb (C, N), VC and MoC) at lower temperatures. The studied TWIP steels exhibit similar microhardness values, since the microalloying elements are mostly dissolved in solid solution. The TWIP steels microalloyed with V and Ti exhibited the highest microhardness values.

Type
Articles
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Graessel, O., Krueger, L., Frommeyer, G. and Meyer, L.W., Int. J. Plast. 16, 1391, (2000).CrossRefGoogle Scholar
Liu, H., Liu, J., Michelic, S. K., Shen, S., Su, X., Wu, B. and Ding, H., Steel Res. Int, 12, 1723, (2016).CrossRefGoogle Scholar
Xin, X. L., Yang, J., Wang, Y. N., Wang, R. Z., Wang, W. L., Zheng, H. G. and Hu, H. T.. Ironmak. Steelmak. 43, 234 (2016).CrossRefGoogle Scholar
Zhuang, C., Liu, J., Mi, Z., Jiang, H., Tang, D. and Wang, G.. Steel Res. Int. 85, 1432, (2014).CrossRefGoogle Scholar
De Cooman, B. C., Kwon, O. and Chin, K.G.. Mater. Sci. Tech., 28, 513, (2012).CrossRefGoogle Scholar
Kim, J. and De Cooman, B. C.. Metall. Mater. Trans A, 42, 932, (2011).CrossRefGoogle Scholar
Park, K. T., Kim, G., Kim, S. K., Lee, S. W., Hwang, S. W. and Lee, C. S.. Met. Mater. Int., 16, 1, (2010).CrossRefGoogle Scholar
Bouaziz, O., Allain, S., Scott, C. P., Cugy, P. and Barbier, D.. Mater. Sci., 15, 141(2011).Google Scholar
Kang, S., Tuling, A, Banerjee, J.R., Gunawardana, W.D. and Mintz, B., Mater. Sci. Tech., 27, 95, (2011).CrossRefGoogle Scholar
Gigacher, G., Krieger, W., Scheller, P.R. and Thomser, C., Steel Res. Int., 76, 644, (2005).CrossRefGoogle Scholar
Grajcar, A., Galisz, U. and Bulkowski, L., Arch. Mater. Sci. Eng. A, 50, 21 (2011).Google Scholar
Park, J. H., Kim, D. J. and Min, D. J.. Mater. Sci. Eng. A, 43, 2316, (2012).Google Scholar
ASTM E92-17, ASTM International, West Conshohocken, PA, (2017).Google Scholar
Liu, H., Liu, J., Michelic, S.K., Shen, S., Su, X. and Wu, B., Ding, H., Steel Res. Int. 12, 1723, (2016).CrossRefGoogle Scholar
Ezatpour, H. R., Torabi-Parizi, M., Ebrahimi, G. R. and Momeni, A., Steel Res. Int., 89, 1, (2018).CrossRefGoogle Scholar
Haddrill, D.M., Younger, R.N. and Baker, R.G., Acta Metall. 9, 982, (1961).CrossRefGoogle Scholar
Kwan-Hee, H., Mater. Sci. Eng. A. 279, 1, (2000).Google Scholar
Scott, C., Remy, B., Collet, J-L., Cael, A., Bao, C., Danoix, F., Malard, B. and Curfs, C., Int. J. Mater. Res. 102, 538 (2011).Google Scholar
Chateau, J. P., Dumay, A., Allain, S. and Jacques, A.. J. Phys. Conf. Ser., 240, 1, (2010).Google Scholar
Baker, T. N., Mater. Sci. Technol., 25, 1083, (2009).CrossRefGoogle Scholar
Salas-Reyes, A. E., Mejía, I., Bedolla-Jacuinde, A., Boulaajaj, A., Calvo, J. and Cabrera, J. M., Mater. Sci. Eng. A, 77, 611, (2014).Google Scholar
Dobrzański, L.A., Grajcar, A. and Borek, W., J. Achiev. Mater. and Manuf., 31, 218, (2008).Google Scholar
Funnell, G.D. and Davies, R.J.. Metals Technol. 5, 150, (1978).CrossRefGoogle Scholar
Osinkolu, G.A. and Kobylanski, A., Scripta Metall. 21, 243, (1987).CrossRefGoogle Scholar
Sellars, C.M.. Trans. Royal Soc. London. 288, 147, (1978).Google Scholar
Pierson, H. O., Handbook of refractory carbides and nitrides, Noyes Co, New Jersey, 1st Edition 110, (1996).Google Scholar
Kang, S., Jung, J.G., and Lee, Y.K., Mater. Trans., 53, 2187, (2012).CrossRefGoogle Scholar