Skip to main content Accessibility help

Bio-synthesis of BiVO4 Nanorods Using Extracts of Callistemon viminalis

  • H.E.A. Mohamed (a1) (a2), B.T. Sone (a1) (a2), M.S. Dhlamini (a1) (a2) and M. Maaza (a1) (a2)


In this contribution we report on the synthesis of n-type Bismuth vanadate (BiVO4) nanorods prepared via the use of aqueous extracts of Callistemon viminalis. X-ray diffraction analysis confirmed the formation of highly crystalline monoclinic BiVO4 nanorods post annealing of the Bismuth vanadate precursor powder at 500 °C. Scanning Electron Microscopy and High Resolution Transmission Electron Microscopy showed that BiVO4 nanorods have a high aspect ratio. Using UV-Vis absorption measurements the optical band gap of the nanorods is estimated to be 2.4 eV which makes the bio-synthesized BiVO4 powder a good candidate for sunlight driven photocatalysis.


Corresponding author


Hide All
[1]Ke, D., Peng, T., Ma, L., Cai, P., and Dai, K.. Effects of hydrothermal temperature on the microstructures of BiVO4 and its photocatalytic O2 evolution activity under visible light. Inorganic Chemistry, 48(11): 46854691, 2009.
[2]Shang, M., Wang, W., Sun, S., Ren, J., Zhou, L., and Zhang, L.. E_cient visible light-induced photocatalytic degradation of contaminant by spindle-like pani/bivo4. The Journal of Physical Chemistry C, 113 (47):2022820233, 2009.
[3]Zhou, L., Wang, W., and Zhang, L.. Ultrasonic-assisted synthesis of visible-light-induced bi 2 mo 6 (m=w, mo) photocatalysts. Journal of Molecular Catalysis A: Chemical, 268(1):195200, 2007.
[4]Li, H., Liu, G., and Duan, X., Monoclinic BiVO4 with regular morphologies: hydrothermal synthesis, characterization and photocatalytic properties. Materials Chemistry and Physics, 115(1), pp.913, 2009.
[5]Jiang, H., Dai, H., Meng, X., Zhang, L., Deng, J., Liu, y., and Au, C.T., Hydrothermal fabrication and visible-light-driven photocatalytic properties of bismuth vanadate with multiple morphologies and/or porous structures for Methyl Orange degradation. Journal of Environmental Sciences, 24(3), pp.449457, 2012.
[6]Liu, J., Wang, H., Wang, S., and Yan, H., Hydrothermal preparation of BiVO 4 powders. Materials Science and Engineering: B, 104(1), pp.3639, 2003.
[7]Zhou, L., Wang, W., and Zhang, l., Ultrasonic-assisted synthesis of visible-light-induced Bi 2MO 6 (M= W, Mo) photocatalysts. Journal of Molecular Catalysis A: Chemical, 268(1), pp.195200, 2007.
[8]Wang, M., Liu, Q., and Luan, H., Preparation, Characterization and photocatalytic property of Bismuth Vanadate Photocatalyst by Sol-Gel method. College of Environmental and Chemical Engineering, Shenyang. Aplplied Mechanics and Materials, 99-100, pp 13071311, 2011.
[9]Thema, F., Manikandan, E., Dhlamini, M., and Maaza, M.. Green synthesis of zno nanoparticles via agathosma betulina natural extract. Materials Letters, 161:124127, 2015.
[10]Thovhogi, N., Diallo, A., Gurib-Fakim, A., and Maaza, M.. Nanoparticles green synthesis by hibiscus sabdariffa flower extract: Main physical properties. Journal of Alloys and Compounds, 647:392396, 2015.
[11]Diallo, A., Ngom, B., Park, E., and Maaza, M.. Green synthesis of zno nanoparticles by aspalathus linearis: Structural & optical properties. Journal of Alloys and Compounds, 646:425430, 2015.
[12]Sone, B.T., Diallo, A., Fuku, X., Gurib-Fakim, A., and Maaza, M.. Biosynthesized CuO nano-platelets: physical properties & enhanced thermal conductivity nanofluidics. Arabian Journal of Chemistry, 2017.
[13]Ismail, E., Khenfouch, M., Dhlamini, M., Dube, S., and Maaza, M.. Green palladium and palladium oxide nanoparticles synthesized via Aspalathus linearis natural extract. Journal of Alloys and Compounds,695: 36323638, 2017.
[14]Sone, B.T., Maaza, M. Room Temperature Green Synthesis of CdO Nanoparticles Using Aqueous Extracts of Callistemon Viminalis. J Nanomater Mol Nanotechnol 6(1), 2017
Ismail, E., Khenfouch, M., Dhlamini, M., Dube, S., and Maaza, M.. Green Biosynthesis of Rhodium Nanoparticles Via Aspalathus Linearis Natural Extract. J Nanomater Mol Nanotechnol, 2017.
[15]Diallo, A., Beye, A., Doyle, T., Park, E., and Maaza, M.. Green synthesis of co3o4 nanoparticles via aspalathus linearis: physical properties. Green Chemistry Letters and Reviews, 8(3-4):3036, 2015.
[16]Ismail, E., Khamlich, S., Dhlamini, M., and Maaza, M.. Green biosynthesis of ruthenium oxide nanoparticles on nickel foam as electrode material for supercapacitor applications. RSC Advances, 6(90):8684386850, 2016.
[17]Thovhogi, N., Park, E., Manikandan, E., Maaza, M., and Gurib-Fakim, A.. Physical properties of cdo nanoparticles synthesized by green chemistry via hibiscus sabdariffa flower extract. Journal of Alloys and Compounds, 655:314320, 2016.
[18]Sone, B.T., Fuku, X.G., Maaza, M.. Physical & electrochemical properties of green synthesized bunsenite NiO nanoparticles via Callistemon viminalis’ extracts. Int J Electrochem Sci 11(10):82048220, 2016.
[19]Diallo, A., Manikandan, E., Rajendran, V., and Maaza, M.. Physical & enhanced photocatalytic properties of green synthesized SnO2 nanoparticles via aspalathus linearis. Journal of Alloys and Compounds, 681:561570, 2016.
[20]Vasantharaj, S., Sripriya, N., Shanmugavel, M., Manikandan, E., Gnanamani, A.,and Senthilkumar, P.. Surface active gold nanoparticles biosynthesis by new approach for bionanocatalytic activity. Journal of Photochemistry and Photobiology B: Biology, 2018
[21]Manikandan, E., Murugan, V., Kavitha, G., Babu, P., and Maaza, M.. Nanoflower rod wire-like structures of dual metal (Al and Cr) doped ZnO thin films: Structural, optical and electronic properties. Materials Letters,131: 225228, 2014
[22]Lokesh, K., Kavitha, G., Manikandan, E., Mani, G.K, Kaviyarasu, K., Rayappan, J. B. B, and Maaza, M.. Effective ammonia detection using n-ZnO/p-NiO heterostructured nanofibers. IEEE Sensors Journal,16(8): 2477—2483, 2016
[23]Z.Salem, M., Ali, H.M., El-Shanhorey, N.A., and Abdel-Megeed, A., Evaluation of extracts and essential oil from Callistemon viminalis leaves: Antibacterial and antioxidant activities, total phenolic and flavonoid contents. Asian Pacific journal of tropical medicine, 6(10), pp.785791, 2013.
[24]Gawande, S. B. and Thakare, S. R.. Graphene wrapped BiVO4 photocatalyst and its enhanced performance under visible light irradiation. International Nano Letters, 2(1):11, 2012.
[25]Sivakumar, V., Suresh, R., Giribabu, K., and Narayanan, V.. BiVO4 nanoparticles: Preparation, character- ization and photocatalytic activity. Cogent Chemistry, 1(1):10746–47, 2015.
[26]Abraham, S. D., David, S. T., Bennie, R. B., Joel, C., and Kumar, D. S.. Eco-friendly and green synthesis of bivo 4 nanoparticle using microwave irradiation as photocatalayst for the degradation of alizarinred s. Journal of Molecular Structure, 1113:174181, 2016.
[27]Byrappa, K., Chandrashekar, C., Basavalingu, B., LokanathaRai, K., Ananda, S., and Yoshimura, M.. Growth, morphology and mechanism of rare earth vanadate crystals under mild hydrothermal condi- tions. Journal of crystal growth, 306(1):94101, 2007
[28]Yu, J. and Kudo, A.. Hydrothermal synthesis of nano_brous bismuth vanadate. Chemistry letters, 34(6):850{851, 2005.
[29]Frost, R. L., Henry, D. A., Weier, M. L., and Martens, W.. Raman spectroscopy of three polymorphs of BiVO4: clinobisvanite, dreyerite and pucherite, with comparisons to (vo4) 3-bearing minerals: namibite, pottsite and schumacherite. Journal of Raman Spectroscopy, 37(7):722{732, 2006.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed