Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T12:12:48.328Z Has data issue: false hasContentIssue false

Au/TiO2 Lyogels for Hydrogen Production

Published online by Cambridge University Press:  15 May 2017

Elies Molins*
Affiliation:
Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), c/ Til·lers, 1, Campus UAB, 08193 Bellaterra, Spain
Mónica Benito
Affiliation:
Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), c/ Til·lers, 1, Campus UAB, 08193 Bellaterra, Spain
Ignasi Mata
Affiliation:
Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), c/ Til·lers, 1, Campus UAB, 08193 Bellaterra, Spain
Lester Martínez
Affiliation:
Institute of Energy Technologies and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, EEBE, 08019 Barcelona, Spain
Lluís Soler
Affiliation:
Institute of Energy Technologies and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, EEBE, 08019 Barcelona, Spain
Jordi Llorca
Affiliation:
Institute of Energy Technologies and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, EEBE, 08019 Barcelona, Spain
Get access

Abstract

Au/TiO2 lyogels have been prepared by sol-gel process followed by freeze-drying and calcination in order to induce crystallization. In the synthesis, a dispersion of AuNPs was added either during the sol-gel process or mixed with the lyogels in a ball mill after the freeze-drying. The lyogels are formed of TiO2 crystallites decorated with Au nanoparticles. The size of the TiO2 crystallites and the proportion of anatase and rutile depend on the parameters of the calcinations. The efficiency in photocatalysis diminishes with the size of the crystallites and is optimal when the lyogels include rutile together with the photoactive anatase.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Murdoch, M., Waterhouse, G.I.N., Nadeem, M.A., Metson, J.B., Keane, M.A., Howe, R. F., Llorca, J., Idriss, H., Nat. Chem. 3, 489492 (2011).Google Scholar
Chen, W.T., Chan, A., Al-Azri, Z.H.N., Dosado, A.G., Nadeem, M.A., Sun-Waterhouse, D., Idriss, H., Waterhouse, G.I.N.. J. Catal. 329, 499513 (2015).Google Scholar
Schneider, M. and Baiker, A., Catal. Today 35, 339365 (1997).CrossRefGoogle Scholar
Pons, A., Casas, L., Estop, E., Molins, E., Harris, K.D.M. and Xu, M., J. Non-Cryst. Solids 358, 461469 (2012).Google Scholar
Mukai, S.R., Nishihara, H., Shichi, S. and Tamon, H., Chem. Mater. 16, 49874991 (2004).Google Scholar
Brust, M., Walker, M., Bethell, D., Schiffrin, D.J., Whyman, R., J. Chem. Soc., Chem. Commun. 7, 801802 (1994).CrossRefGoogle Scholar
Calza, P., Pelizzetti, E., Mogyorósi, K., Kun, R., Dékány, I., Appl. Catal. B 72, 314321 (2007).Google Scholar
Ohtani, B., Ogawa, Y., Nishimoto, S.-I.. J. Phys. Chem. B 101, 37463752 (1997).Google Scholar