Skip to main content Accessibility help

Atomistic simulation of nearly defect-free models of amorphous silicon: An information-based approach

  • Dil K. Limbu (a1), Raymond Atta-Fynn (a2) and Parthapratim Biswas (a1)


We present an information-based total-energy optimization method to produce nearly defect-free structural models of amorphous silicon. Using geometrical, structural, and topological information from disordered tetrahedral networks, we have shown that it is possible to generate structural configurations of amorphous silicon, which are superior than the models obtained from conventional reverse Monte Carlo and molecular dynamics simulations. The new data-driven hybrid approach presented here is capable of producing atomistic models with structural and electronic properties which are on a par with those obtained from the modified Wooten-Winer-Weaire (WWW) models of amorphous silicon. Structural, electronic, and thermodynamic properties of the hybrid models are compared with the best dynamical models obtained from using machine-intelligence-based algorithms and efficient classical molecular dynamics simulations, reported in the recent literature. We have shown that, together with the WWW models, our hybrid models represent one of the best structural models so far produced by total-energy-based Monte Carlo methods in conjunction with experimental diffraction data.


Corresponding author


Hide All
[1]Street, R. A., Technology and Applications of Amorphous Silicon (Springer, Berlin Germany, 2000).
[2]Taguchi, M., Yano, A., Tohoda, S., Matsuyama, K., Nakamura, Y., Nishiwaki, T., Fujita, K., and Maruyama, E., IEEE Journal of Photovoltaics 4, 96 (2014).
[3]Veldhorst, M., Yang, C. H., Hwang, J. C. C., Huang, W., Dehollain, J. P., Muhonen, J. T., Simmons, S., Laucht, A., Hudson, F. E., Itoh, K. M., Morello, A., and Dzurak, A. S., Nature 526, 410 (2015).
[4]Zachariasen, W. H., J. Am. Chem. Soc. 54, 3841 (1932).
[5]Wooten, F., Winer, K., and Weaire, D., Phys. Rev. Lett. 54, 1392 (1985).
[6]Barkema, G. T. and Mousseau, N., Phys. Rev. B 62, 4985 (2000).
[7]Deringer, V. L., Bernstein, N., Bartók, A. P., Cliffe, M. J., Kerber, R. N., Marbella, L. E., Grey, C. P., Elliott, S. R., and Csányi, G., J. Phys. Chem. Lett. 9, 2879 (2018).
[8]Atta-Fynn, R. and Biswas, P., J. Chem. Phys. 148, 204503 (2018).
[9]Pedersen, A., Pizzagalli, L., and Jónsson, H., New J. Phys. 19, 063018 (2017).
[10]Car, R. and Parrinello, M., Phys. Rev. Lett. 60, 204 (1988).
[11]Biswas, P., Atta-Fynn, R., and Drabold, D. A., Phys. Rev. B 69, 195207 (2004).
[12]McGreevy, R. L., J. Phys.: Condens. Matter 13, R877 (2001).
[13]Gereben, O. and Pusztai, L., Phys. Rev. B 50, 14136 (1994).
[14]Cliffe, M. J., Dove, M. T., Drabold, D. A., and Goodwin, A. L., Phys. Rev. Lett. 104, 125501 (2010).
[15]Pandey, A., Biswas, P., and Drabold, D. A., Phys. Rev. B 92, 155205 (2015).
[16]Biswas, P., Tafen, D. N., and Drabold, D. A., Phys. Rev. B 71, 054204 (2005).
[17]Limbu, D. K., Atta-Fynn, R., Drabold, D. A., Elliott, S. R., and Biswas, P., Phys. Rev. Materials 2, 115602 (2018).
[18]Stillinger, F. H. and Weber, T. A., Phys. Rev. B 31, 5262 (1985).
[19]Vink, R. L. C., Barkema, G. T., van der Weg, W. F., and Mousseau, N., J. Non-Cryst. Solids 282, 248 (2001).
[20]Soler, J. M., Artacho, E., Gale, J. D., García, A., Junquera, J., Ordejón, P., and Sánchez-Portal, D., J. Phys.: Condens. Matter 14, 2745 (2002).
[21]Troullier, N. and Martins, J. L., Phys. Rev. B 43, 1993 (1991).
[22]Perdew, J. P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).
[23]Hoppe, R., Z. Kristallogr. 150, 23 (1979).
[24]Limbu, D. K., Madueke, M. U., Atta-Fynn, R., Drabold, D. A., and Biswas, P., Ab initio density-functional studies of 13-atom Cu and Ag clusters , arXiv:1809.00300 (2018).
[25]Laaziri, K., Kycia, S., Roorda, S., Chicoine, M., Robertson, J. L., Wang, J., and Moss, S. C., Phys. Rev. B 60, 13520 (1999).
[26]Beeman, D., Tsu, R., and Thorpe, M. F., Phys. Rev. B 32, 874 (1985).
[27]Steinhardt, P. J., Nelson, D. R., and Ronchetti, M., Phys. Rev. B 28, 784 (1983).
[28]Limbu, D. K., Atta-Fynn, R., Drabold, D. A., Elliott, S. R., and Biswas, P., Phys. Rev. B 96, 174208 (2017).
[29]Maradudin, A. A., Montroll, E. W., Weiss, G. H., and Ipatova, I. P., Theory of Lattice Dynamics in the Harmonic Approximation (Academic Press, New York, 1971).
[30]Zink, B. L., Pietri, R., and Hellman, F., Phys. Rev. Lett. 96, 055902 (2006).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed