Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T01:27:43.372Z Has data issue: false hasContentIssue false

Atomic Layer Deposited Electron Transport Layers in Efficient Organometallic Halide Perovskite Devices

Published online by Cambridge University Press:  03 July 2018

Melissa M. McCarthy*
Affiliation:
Tyndall National Institute, University Cork College, Lee Maltings Complex, Cork, Ireland. School of Chemistry, University College Cork, Cork, Ireland.
Arnaud Walter
Affiliation:
Centre Suisse d’Electronique et de Microtechnique (CSEM), PV-Center, Jaquet-Droz 1, 2002 Neuchâtel, Switzerland.
Soo-Jin Moon
Affiliation:
Centre Suisse d’Electronique et de Microtechnique (CSEM), PV-Center, Jaquet-Droz 1, 2002 Neuchâtel, Switzerland.
Nakita K. Noel
Affiliation:
Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford, UK.
Shane O’Brien
Affiliation:
Tyndall National Institute, University Cork College, Lee Maltings Complex, Cork, Ireland.
Martyn E. Pemble
Affiliation:
Tyndall National Institute, University Cork College, Lee Maltings Complex, Cork, Ireland. School of Chemistry, University College Cork, Cork, Ireland.
Sylvain Nicolay
Affiliation:
Centre Suisse d’Electronique et de Microtechnique (CSEM), PV-Center, Jaquet-Droz 1, 2002 Neuchâtel, Switzerland.
Bernard Wenger
Affiliation:
Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford, UK.
Henry J. Snaith
Affiliation:
Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford, UK.
Ian M. Povey
Affiliation:
Tyndall National Institute, University Cork College, Lee Maltings Complex, Cork, Ireland.
Get access

Abstract

Amorphous TiO2 and SnO2 electron transport layers (ETLs) were deposited by low-temperature atomic layer deposition (ALD). Surface morphology and x-ray photoelectron spectroscopy (XPS) indicate uniform and pinhole free coverage of these ALD hole blocking layers. Both mesoporous and planar perovskite solar cells were fabricated based on these thin films with aperture areas of 1.04 cm2 for TiO2 and 0.09 cm2 and 0.70 cm2 for SnO2. The resulting cell performance of 18.3 % power conversion efficiency (PCE) using planar SnO2 on 0.09 cm2 and 15.3 % PCE using mesoporous TiO2 on 1.04 cm2 active areas are discussed in conjunction with the significance of growth parameters and ETL composition.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Noh, J. H., Im, S. H., Heo, J. H., Mandal, T. N., and Seok, S. I., Nano Lett., 13 (4), 17641769 (2013).CrossRefGoogle Scholar
Ogomi, Y., Morita, A., Tsukamoto, S., Saitho, T., Fujikawa, N., Shen, Q., Toyoda, T., Yoshino, K., Pandey, S. S., Ma, T., and Hayase, S., J. Phys. Chem. Lett., 5 (6), 10041011 (2014).CrossRefGoogle Scholar
Eperon, G. E., Stranks, S. D., Menelaou, C., Johnston, M. B., Herza, L. M., and Snaith, H. J., Energy Environ. Sci., 7, 982988 (2014).CrossRefGoogle Scholar
Berry, J., Buonassisi, T., Egger, D. A., Hodes, G., Kronik, L., Loo, Y.-L., Lubomirsky, I., Marder, S. R., Mastai, Y., Miller, J. S., Mitzi, D. B., Paz, Y., Rappe, A. M., Riess, I., Rybtchinski, B., Stafsudd, O., Stevanovic, V., Toney, M. F., Zitoun, D., Kahn, A., Ginley, D., and Cahen, D., Adv. Mater., 27, 51025112 (2015).CrossRefGoogle Scholar
Xing, G., Mathews, N., Sun, S., Lim, S. S., Lam, Y. M., Grätzel, M., Mhaisalkar, S., and Sum, T. C., Science, 342 (6156), 344-347 (2013).CrossRefGoogle Scholar
Stranks, S. D., Eperon, G. E., Grancini, G., Menelaou, C., Alcocer, M. J. P., Leijtens, T., Herz, L. M., Petrozza, A., and Snaith, H. J., Science, 342 (6156), 341-344 (2013).CrossRefGoogle Scholar
Dong, Q., Fang, Y., Shao, Y., Mulligan, P., Qiu, J., Cao, L., and Huang, J., Science, 347 (6225), 967-970 (2015).CrossRefGoogle Scholar
Mitzi, D. B., Chondroudis, K., and Kagan, C. R., IBM J. Res. DeV., 45 (1), 2945 (2001).CrossRefGoogle Scholar
Kojima, A., Teshima, K., Shirai, Y., and Miyasaka, T., J. Amer. Chem. Soc., 131 (17), 60506051 (2009).CrossRefGoogle Scholar
National Renewable Energy Laboratory: Efficiency Chart (2018). Available at: https://www.nrel.gov/pv/assets/images/efficiency-chart.png (accessed 14 March 2018).Google Scholar
Pistor, P., Borchert, J., Fränzel, W., Csuk, R., and Scheer, R., J. Phys. Chem. Lett., 5 (19), 33083312 (2014).CrossRefGoogle Scholar
Ito, S., Tanaka, S., Manabe, K., and Nishino, H., J. Phys. Chem. C, 118 (30), 1699517000 (2014).CrossRefGoogle Scholar
Correa-Baena, J.-P., Saliba, M., Buonassisil, T., Grätzel, M., Abate, A., Tress, W., and Hagfeldt, A., Science, 358 (6364), 739-744 (2017).CrossRefGoogle Scholar
Wang, H.-H., Chen, Q., Zhou, H., Song, L., St Louis, Z., De Marco, N., Fang, Y., Sun, P., Song, T.-B., Chena, H., and Yang, Y., J. Mater. Chem. A, 3, 91089115 (2015).CrossRefGoogle Scholar
Wojciechowski, K., Leijtens, T., Siprova, S., Schlueter, C., Hörantner, M. T., Wang, J. T., Li, C.-Z., Jen, A. K.-Y., Lee, T.-L., and Snaith, H. J., J. Phys. Chem. Lett. 6 (12), 23992405 (2015).CrossRefGoogle Scholar
Liu, D. and Kelly, T. L., Nat. Photonics, 8, 133138 (2014).CrossRefGoogle Scholar
Ke, W., Fang, G., Liu, Q., Xiong, L., Qin, P., Tao, H., Wang, J., Lei, H., Li, B., Wan, J., Yang, G., and Yan, Y., J. Am. Chem. Soc., 137, 67306733 (2015).CrossRefGoogle Scholar
Li, Y., Zhu, J., Huang, Y., Liu, F., Lv, M., Chen, S., Hu, L., Tang, J., Yaod, J., and Dai, S., RSC Adv., 5, 2842428429 (2015).CrossRefGoogle Scholar
Dong, Q., Shi, Y., Wang, K., Li, Y., Wang, S., Zhang, H., Xing, Y., Du, Y., Bai, X., and Ma, T., J. Phys. Chem. C., 119 (19), 1021210217 (2015).CrossRefGoogle Scholar
Correa Baena, J.-P., Steier, L., Tress, W., Saliba, M., Neutzner, S., Matsui, T., Giordano, F., Jacobsson, T. J., Srimath Kandada, A. R., Zakeeruddin, S. M., Petrozza, A., Abate, A., Khaja Nazeeruddin, M., Grätzel, M., and Hagfeldt, A., Energy Environ. Sci., 8, 29282934 (2015).CrossRefGoogle Scholar
Kavan, L., Steier, L., and Grätzel, M., J. Phys. Chem. C., 121 (1), 342350 (2017).CrossRefGoogle Scholar
Wu, Y., Yang, X., Chen, H., Zhang, K., Qin, C., Liu, J., Peng, W., Islam, A., Bi, E., Ye, F., Yin, M., Zhang, P., and Han, L., Appl. Phys. Express, 7, 052301 (2014).CrossRefGoogle Scholar
Yates, H. M., Afzaal, M., Walter, A., Hodgkinson, J. L., Moon, S-J., Sacchetto, D., Bräuninger, M., Niesen, B., Nicolay, S., McCarthy, M. M., Pemble, M. E., Povey, I. M., and Ballif, C., J. Mater. Chem. C, 4, 1126911277 (2016).CrossRefGoogle Scholar
Mailoa, J. P., Bailie, C. D., Johlin, E. C., Hoke, E. T., Akey, A. J., Nguyen, W. H., McGehee, M. D., and Buonassisi, T., Appl. Phys. Lett. 106, 121105 (2015).CrossRefGoogle Scholar
Noel, N. K., Habisreutinger, S. N., Wenger, B., Klug, M. T., Hörantner, M. T., Johnston, M. B., Nicholas, R. J., Moore, D. T., and Snaith, H. J., Energy Environ. Sci., 10, 145152 (2017).CrossRefGoogle Scholar
Walter, A., Moon, S-J., Kamino, B. A., Lofgren, L., Sacchetto, D., Matteocci, F., Taheri, B., Bailat, J., Di Carlo, A., Ballif, C., and Nicolay, S., IEEE J. Photovolt., 8 (1), 151155 (2018).CrossRefGoogle Scholar
Xie, Q., Jiang, Y.L., Detavenier, C., Deduytsche, D., Van Meirhaeghe, R.L., Ru, G.P., J. Appl. Phys., 102, 083521 (2007).CrossRefGoogle Scholar
Choi, K., Ghosh, S., Lim, J., Lee, C.M., Appl. Surfaces Science, 206, 355364 (2003).CrossRefGoogle Scholar
Sanchis, M.R., Blanes, V., Blanes, M., Garcia, D., Balart, R., European Polymer Journal, 42, 15581568 (2006).CrossRefGoogle Scholar
Ke, W., Fang, G., Liu, Q., Xiong, L., Qin, P., Tao, H., Wang, J., Lei, H., Li, B., Wan, J., Yang, G., Yan, Y., J. Am. Chem. Soc., 137, 67306733 (2015)CrossRefGoogle Scholar
Jiang, Q., Zhang, L., Wang, H., Yang, X., Meng, J., Liu, H., Yin, Z., Wu, J., Zhang, X., You, J., Nat. Energy, 2, 16177 (2016).CrossRefGoogle Scholar
Wang, C., Zhao, D., Grice, C., Liao, W., Yu, Y., Cimaroli, A., Shrestha, N., Roland, P. J., Chen, J., Yu, Z., Liu, P., Cheng, N., Ellingson, R., Zhao, X. and Yan, Y., J. Mater. Chem. A, 4, 1208012087 (2016).CrossRefGoogle Scholar