Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T10:03:00.464Z Has data issue: false hasContentIssue false

Artificial Photosynthesis Device Development for CO2 Photoelectrochemical Conversion.

Published online by Cambridge University Press:  09 February 2016

Jamie F. Thompson*
Affiliation:
NASA’s Ames Research Centre, Moffett Field, CA 94035, U.S.A.
Bin Chen
Affiliation:
NASA’s Ames Research Centre, Moffett Field, CA 94035, U.S.A.
Michael Kubo
Affiliation:
NASA’s Ames Research Centre, Moffett Field, CA 94035, U.S.A.
Nicolas Londoño
Affiliation:
NASA’s Ames Research Centre, Moffett Field, CA 94035, U.S.A.
Julian Minuzzo
Affiliation:
NASA’s Ames Research Centre, Moffett Field, CA 94035, U.S.A.
Get access

Abstract

Development of a photoelectrochemical conversion device, operated at room temperature and ambient pressure with only ultraviolet radiation as an energy source is presented. We report a nanocomposite platform that combines a photocatalyst and an electrocatalyst capable of reducing gaseous Carbon Dioxide, without using external electricity. The composite catalyst produces Methane from Carbon Dioxide and atmospheric water vapor at an initial high conversion rate of 2596 μL of CH4 per gram of catalyst per hour, which is amongst the highest reported. Our new approach offers a versatile solution to reduce the rising level of atmospheric Carbon Dioxide where a source of light is available.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Marland, G., Boden, T. A., and Andres, R. J., Global, Regional, and National Fossil Fuel CO2 Emissions (2003).Google Scholar
Solomon, S., Plattner, G.-K., Knutti, R., and Friedlingstein, P., Pnas 106, 1704 (2009).Google Scholar
Cao, L., Bala, G., Caldeira, K., Nemani, R., and Ban-Weiss, G., Proc. Natl. Acad. Sci. U.S.a. 107, 9513 (2010).CrossRefGoogle Scholar
and, X. X. and Moulijn, J. A., Energy Fuels 10, 305 (1996).Google Scholar
Balch, W. E., Schoberth, S., Tanner, R. S., and Wolfe, R. S., Int. J. Syst. Evol. Microbiol. 27, 355 (1977).Google Scholar
Conrad, R. and Klose, M., FEMS Microbiol. Ecol. 30, 147 (1999).Google Scholar
Gattrell, M., Gupta, N., Co, A., and Co, A., J. Electroanal. Chem. 594, 1 (2006).CrossRefGoogle Scholar
Fujishima, A. and HONDA, K., Nature 238, 37 (1972).CrossRefGoogle Scholar
Jitaru, M., Lowy, D. A., Toma, M., Toma, B. C., and Oniciu, L., J. Appl. Electrochem. 27, 875 (1997).Google Scholar
Liu, C., Gallagher, J. J., Sakimoto, K. K., Nichols, E. M., Chang, C. J., Chang, M. C. Y., and Yang, P., Nano Lett. 15, 3634 (2015).Google Scholar
Liu, C., Tang, J., Chen, H. M., Liu, Bin, and Yang, P., Nano Lett. 13, 2989 (2013).Google Scholar
Varghese, O. K., Paulose, M., LaTempa, T. J., and Grimes, C. A., Nano Lett. 9, 731 (2009).CrossRefGoogle Scholar
Hori, Y., Konishi, H., Futamura, T., Murata, A., Koga, O., Sakurai, H., and Oguma, K., Electrochim. Acta 50, 5354 (2005).CrossRefGoogle Scholar