Hostname: page-component-84b7d79bbc-fnpn6 Total loading time: 0 Render date: 2024-07-29T22:09:58.215Z Has data issue: false hasContentIssue false

Aqueous Manganese Dioxide Ink for High Performance Capacitive Energy Storage Devices

Published online by Cambridge University Press:  16 May 2016

Jiasheng Qian*
Affiliation:
Department of Applied Physics, the Hong Kong Polytechnic University, Hong Kong SAR
Shu Ping Lau
Affiliation:
Department of Applied Physics, the Hong Kong Polytechnic University, Hong Kong SAR
Jikang Yuan
Affiliation:
Department of Applied Physics, the Hong Kong Polytechnic University, Hong Kong SAR
Get access

Abstract

We report a simple approach to fabricate high performance energy storage devices based on aqueous inorganic ink comprised of hexagonal MnO2 nanosheets. The MnO2 ink exhibits long term stability. Continuous thin films can be formed on various substrates without using any binder. To obtain a flexible electrode for capacitive energy storage, we printed the MnO2 ink on commercially available A4 paper pre-treated by multi-walled carbon nanotubes. The electrode exhibited a maximum specific capacitance of 90.8 mF/cm2. The electrode could maintain 98.7% capacitance retention for 1,000 cycles at 10 mV/s. The MnO2 ink could be a potential candidate for large-scale production of flexible and printable electronic devices for energy storage and conversion.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Embden, J., Chesman, A. S. R., Gaspera, E. D., Duffy, N. W., Wathins, S. E. and Jasieniak, J. J., J. Am. Chem. Soc. 136, 5237 (2014).Google Scholar
Tobjörk, D. and Österbacka, R., Adv. Mater. 23, 1935 (2011).Google Scholar
Banger, K. K., Yamashita, Y., Mori, K., Peterson, R. L., Leedham, T., Rickard, J. and Sirringhaus, H., Nat. Mater. 10, 45 (2011).CrossRefGoogle Scholar
Rogers, J. A. and Huang, Y. G., Proc. Natl. Acad. Sci., USA 106, 10875 (2009).Google Scholar
Hu, L., Choi, J. W., Yang, Y., Jeong, S., Mantia, F. L., Cui, L.-F. and Cui, Y., Proc. Natl. Acad. Sci., USA 106, 21490 (2009).Google Scholar
Wang, J., Manga, K. K., Bao, Q. and Loh, K. P., J. Am. Chem. Soc. 133, 8888 (2011).Google Scholar
Choi, J.-H., Wang, H., Oh, S. J., Paik, T., Jo, P. S., Sung, J., Ye, X., Zhao, T., Diroll, B. T., Murray, C. B. and Kagan, C. R., Science 352, 205 (2016).Google Scholar
Fan, Z., Yan, J., Wei, T., Zhi, L., Ning, G., Li, T. and Wei, F., Adv. Funct. Mater. 21, 2366 (2011).Google Scholar
Song, M.-K., Cheng, S., Chen, H., Qin, W., Nam, K.-W., Xu, S., Yang, X.-Q., Bongiorno, A., Lee, J., Bai, J., Tyson, T. A., Cho, J. and Liu, M., Nano Lett. 12, 3483 (2012).CrossRefGoogle Scholar
Lu, X., Yu, M., Wang, G., Zhai, T., Xie, S., Ling, Y., Tong, Y. and Li, Y., Adv. Mater. 25, 267 (2013).Google Scholar
Yu, G., Hu, L., Liu, N., Wang, H., Vosgueritchian, M., Yang, Y., Cui, Y. and Bao, Z., Nano Lett. 11, 4438 (2011).CrossRefGoogle Scholar
Wang, Z., Winslow, R., Madan, D., Wright, P. K., Evans, J. W., Keif, M. and Rong, X., J. Power Sources 268, 246 (2014).Google Scholar
Coustan, L., Comte, A. L., Brousse, T. and Favier, F., Electrochim. Acta 152, 520 (2015).CrossRefGoogle Scholar
Qian, J., Jin, H., Chen, B., Lin, M., Lu, W., Tang, W. M., Xiong, W., Chan, L. W. H., Lau, S. P. and Yuan, J., Angew. Chem. Int. Ed. 54, 6800 (2015).Google Scholar
Qian, J., Liu, M., Gan, L., Tripathi, P. K., Zhu, D., Xu, Z., Hao, Z., Chen, L. and Wright, D. S., Chem. Commun. 49, 3043 (2013).Google Scholar
Su, Z., Yang, C., Xie, B., Lin, Z., Zhang, Z., Liu, J., Li, B., Kang, F. and Wong, C. P., Energy Environ. Sci. 7, 2652 (2014).Google Scholar
Jiang, H., Sun, T., Li, C. and Ma, J., J. Mater. Chem. 22, 2751 (2012).Google Scholar
Wang, D.-W., Li, F., Liu, M., Lu, G. Q. and Cheng, H.-M., Angew. Chem. Int. Ed. 47, 373 (2008).Google Scholar