Skip to main content Accessibility help
×
Home

An amorphous-to-crystalline phase transition within thin silicon films grown through ultra-high-vacuum evaporation on fused quartz substrates

  • Farida Orapunt (a1), Li-Lin Tay (a2), David J. Lockwood (a2), Jean-Marc Baribeau (a3), Joanne C. Zwinkels (a2), Mario Noël (a2) and Stephen K. O’Leary (a4)...

Abstract

A number of thin silicon films are prepared through ultra-high-vacuum evaporation on optical quality fused quartz substrates with different growth temperatures. Through an analysis of grazing incidence X-ray diffraction results, a phase transition, from amorphous-to-crystalline, is found corresponding to increases in the growth temperature. The corresponding Raman spectra are also observed to change their form as the films go through this phase transition. Using a Raman peak decomposition process, this phase transition is then quantitatively characterized through the determination of the amount of intermediate-range order and the crystalline volume fraction for the various growth temperatures considered in this analysis. The possible device consequences of these results are then commented upon.

Copyright

Corresponding author

References

Hide All
1. Terakawa, A., Sol. Energy Mater. Sol. Cells 119, 204 (2013).
2. Street, R. A., Hydrogenated Amorphous Silicon (Cambridge, New York, 1991).
3. Melskens, J., Smets, A. H. M., Schouten, M., Eijt, S. W. H., Schut, H., and Zeman, M., IEEE J. Photovoltaics 3, 65 (2013).
4. Melskens, J., Schouten, M., Mannheim, A., Vullers, A. S., Mohammadian, Y., Eijt, S. W. H., Schut, H., Matsui, T., Zeman, M., and Smets, A. H. M., IEEE J. Photovoltaics 4, 1331 (2014).
5. Stuckelberger, M., Billet, A., Riesen, Y., Boccard, M., Despeisse, M., Schüttauf, J.-W., Haug, F.-J., and Ballif, C., Prog. Photovoltaics 24, 446 (2016).
6. Brodsky, M. H., Cardona, M., and Cuomo, J. J., Phys. Rev. B 16, 3556 (1977).
7. Papaconstantopoulos, D. A. and Economou, E. N., Phys. Rev. B 24, 7233 (1981).
8. Staebler, D. L. and Wronski, C. R., Appl. Phys. Lett. 31, 292 (1977).
9. Biswas, R. and Pan, B. C., Appl. Phys. Lett. 72, 371 (1998).
10. Biswas, R. and Li, Y.-P., Phys. Rev. Lett. 82, 2512 (1999).
11. Brockhoff, A. M., Ullersma, E. H. C., Meiling, H., Habraken, F. H. P. M., and van der Weg, W. F., Appl. Phys. Lett. 73, 3244 (1998).
12. Schmidt, K. J., Lin, Y., Beaudoin, M., Xia, G., O’Leary, S. K., Yue, G., and Yan, B., Can. J. Phys. 92, 857 (2014).
13. Fogal, B. J., O’Leary, S. K., Lockwood, D. J., Baribeau, J.-M., Noël, M., and Zwinkels, J. C., Solid State Commun. 120, 429 (2001).
14. O’Leary, S. K., Fogal, B. J., Lockwood, D. J., Baribeau, J.-M., Noël, M., and Zwinkels, J. C., J. Non-Cryst. Solids 290, 57 (2001).
15. Lockwood, D. J., Baribeau, J.-M., Noël, M., Zwinkels, J. C., Fogal, B. J., and O’Leary, S. K., Solid State Commun. 122, 271 (2002).
16. Tay, L.-L., Lockwood, D. J., Baribeau, J.-M., Noël, M., Zwinkels, J. C., Orapunt, F., and O’Leary, S. K., Appl. Phys. Lett. 88, 121920 (2006).
17. Gupta, S., Katiyar, R. S., Morell, G., Weisz, S. Z., and Balberg, I., Appl. Phys. Lett. 75, 2803 (1999).
18. Sokolov, A. P, Shebanin, A. P, Golikova, O. A, and Mezdrogina, M. M., J. Phys.: Condens. Matter 3, 9887 (1991).
19. Tay, L., Lockwood, D. J., Baribeau, J.-M., Wu, X., and Sproule, G. I., J. Vac. Sci. Technol. A 22, 943 (2004).
20. Shah, A., Ed., Thin-film silicon solar cells (EPFL Press, Lausanne, 2010).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed