Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-19T00:17:02.813Z Has data issue: false hasContentIssue false

Vapor Deposition of Perovskite Precursor PbI2 on Au and Graphite

Published online by Cambridge University Press:  29 January 2020

Benjamin Ecker*
Affiliation:
University of Rochester, Rochester, NY 14627-0171, USA
Ke Wang
Affiliation:
University of Rochester, Rochester, NY 14627-0171, USA
Yongli Gao
Affiliation:
University of Rochester, Rochester, NY 14627-0171, USA
*
Get access

Abstract

The energy level alignment that occurs at the interfaces in planar-hetero structured perovskite photovoltaic devices strongly influences the charge transport across the interface, and thus plays a crucial role in overall device performance. To directly observe the energy level alignment requires pristine homogeneous surfaces that are free of contamination including adventitious carbon. Co-evaporation offers the ability to grow perovskite thin films in-situ, and the method involves thermally evaporating the perovskite precursors such as PbI2 and CH3NH3I. Early reports have shown that the perovskite film formation and stoichiometry are problematic at ultralow coverages. In particular, it was reported that there was excessive PbI2 and a deficiency in CH3NH3I. Using photoemission spectroscopy, we investigated the perovskite precursor PbI2 on gold and highly oriented pyrolytic graphite (HOPG) surfaces. Results show that the nature of the surface and the deposition conditions can strongly influence the film formation. Excessive iodine observed in the initial evaporation stages appears to be substrate dependent, and this may influence the overall energy level alignment.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

Kojima, A., Teshima, K., Shirai, Y. and Miyasaka, T., J Am Chem Soc 131 (17), 6050 (2009).CrossRefGoogle Scholar
NREL, 2019.Google Scholar
Schulz, P., Edri, E., Kirmayer, S., Hodes, G., Cahen, D. and Kahn, A., Energy Environ. Sci. 7 (4), 1377 (2014).CrossRefGoogle Scholar
Lo, M. F., Guan, Z. Q., Ng, T. W., Chan, C. Y. and Lee, C. S., Adv. Funct. Mater. 25 (8), 1213 (2015).CrossRefGoogle Scholar
Schulz, P., Whittaker-Brooks, L. L., MacLeod, B. A., Olson, D. C., Loo, Y. L. and Kahn, A., Adv. Mater. Interfaces 2 (7), 1400532 (2015).CrossRefGoogle Scholar
Wang, C. G., Liu, X. L., Wang, C. C., Xiao, Z. G., Bi, C., Shao, Y. C., Huang, J. S. and Gao, Y. L., J. Vac. Sci. Technol. B 33 (3), 032401 (2015).CrossRefGoogle Scholar
Wang, Q. K., Wang, R. B., Shen, P. F., Li, C., Li, Y. Q., Liu, L. J., Duhm, S. and Tang, J. X., Adv. Mater. Interfaces 2 (3), 1400528 (2015).CrossRefGoogle Scholar
Thibau, E. S., Llanos, A. and Lu, Z. H., Appl. Phys. Lett. 108 (2), 021602 (2016).CrossRefGoogle Scholar
Liu, X., Wang, C., Lyu, L., Wang, C., Xiao, Z., Bi, C., Huang, J. and Gao, Y., Phys Chem Chem Phys 17 (2), 896 (2015).CrossRefGoogle Scholar
Liu, P., Liu, X. L., Lyu, L., Xie, H. P., Zhang, H., Niu, D. M., Huang, H., Bi, C., Xiao, Z. G., Huang, J. S. and Gao, Y. L., Appl. Phys. Lett. 106 (19), 193903 (2015).CrossRefGoogle Scholar
Zhou, X., Li, X., Liu, Y., Huang, F. and Zhong, D., Appl. Phys. Lett. 108 (12), 121601 (2016).CrossRefGoogle Scholar
Xu, H., Wu, Y., Cui, J., Ni, C., Xu, F., Cai, J., Hong, F., Fang, Z., Wang, W., Zhu, J., Wang, L., Xu, R. and Xu, F., Phys Chem Chem Phys 18 (27), 18607 (2016).CrossRefGoogle Scholar
Olthof, S. and Meerholz, K., Sci Rep 7, 40267 (2017).CrossRefGoogle Scholar
Bækbo, M. J., Hansen, O., Chorkendorff, I. and Vesborg, P. C. K., RSC Adv. 8 (52), 29899 (2018).CrossRefGoogle Scholar
Llanos, A., Thibau, E. S. and Lu, Z. H., J Vac Sci Technol A 34 (6), 060601 (2016).CrossRefGoogle Scholar
Borchert, J., Levchuk, I., Snoek, L. C., Rothmann, M. U., Haver, R., Snaith, H. J., Brabec, C. J., Herz, L. M. and Johnston, M. B., ACS Appl. Mater. Interfaces 11 (32), 28851 (2019).CrossRefGoogle Scholar
Liang, K., Mitzi, D. B. and Prikas, M. T., Chem. Mater. 10 (1), 403 (1998).CrossRefGoogle Scholar
Wang, Y., Gan, L., Chen, J., Yang, R. and Zhai, T., Sci. Bull. 62 (24), 1654 (2017).CrossRefGoogle Scholar
Zhang, J., Huang, Y., Tan, Z., Li, T., Zhang, Y., Jia, K., Lin, L., Sun, L., Chen, X., Li, Z., Tan, C., Zhang, J., Zheng, L., Wu, Y., Deng, B., Chen, Z., Liu, Z. and Peng, H., Adv Mater, 20 1803194 (2018).CrossRefGoogle Scholar
Zhang, J. Y., Song, T., Zhang, Z. J., Ding, K., Huang, F. and Sun, B. Q., J. Mater. Chem. C 3 (17), 4402 (2015).CrossRefGoogle Scholar
Sun, Y., Zhou, Z., Huang, Z., Wu, J., Zhou, L., Cheng, Y., Liu, J., Zhu, C., Yu, M., Yu, P., Zhu, W., Liu, Y., Zhou, J., Liu, B., Xie, H., Cao, Y., Li, H., Wang, X., Liu, K., Wang, X., Wang, J., Wang, L. and Huang, W., Adv Mater 31 (17), 1806562 (2019).CrossRefGoogle Scholar
Zheng, W., Zheng, B., Yan, C., Liu, Y., Sun, X., Qi, Z., Yang, T., Jiang, Y., Huang, W., Fan, P., Jiang, F., Ji, W., Wang, X. and Pan, A., Adv Sci 6 (7), 1802204 (2019).CrossRefGoogle Scholar
Liu, X., Ha, S. T., Zhang, Q., de la Mata, M., Magen, C., Arbiol, J., Sum, T. C. and Xiong, Q., ACS Nano 9 (1), 687 (2015).CrossRefGoogle Scholar
Koch, N., Chem. Phys. Chem. 8 (10), 1438 (2007).CrossRefGoogle Scholar
Ahlawat, D. S., Mod. Phys. Lett. B 26 (16), 1250098 (2012).CrossRefGoogle Scholar