Skip to main content Accessibility help
×
Home

Study and optimization of the photoluminescence of amorphous silicon carbide thin films

Published online by Cambridge University Press:  16 January 2019

Maricela Meneses
Affiliation:
Instituto Nacional de Astrofísica, Óptica y Electrónica, INAOE, Tonantzintla, Puebla72840, México.
Mario Moreno
Affiliation:
Instituto Nacional de Astrofísica, Óptica y Electrónica, INAOE, Tonantzintla, Puebla72840, México.
Alfredo Morales
Affiliation:
Instituto Nacional de Astrofísica, Óptica y Electrónica, INAOE, Tonantzintla, Puebla72840, México. Centro de Investigación en Materiales Avanzados, S.C., CIMAV-Unidad Monterrey, México.
Alfonso Torres
Affiliation:
Instituto Nacional de Astrofísica, Óptica y Electrónica, INAOE, Tonantzintla, Puebla72840, México.
Pedro Rosales
Affiliation:
Instituto Nacional de Astrofísica, Óptica y Electrónica, INAOE, Tonantzintla, Puebla72840, México.
Israel Vivaldo
Affiliation:
Benemerita Universidad Autónoma de Puebla, FCE, BUAP, 72000, México.
Corresponding
Get access

Abstract:

In this work we report the study of the effect of the deposition parameters on the photoluminescence (PL) intensity of hydrogenated amorphous silicon-carbide (a-SiC:H) films deposited at very low temperature (150 °C) by Plasma Enhanced Chemical Vapor Deposition (PECVD). We have observed that the main deposition parameter that influences the wavelength emission peak is the methane/silane (CH4/SiH4) ratio used for the films deposition, due to a change on the film carbon content. On the other hand the deposition RF power affects the PL intensity, without a change in the PL emission peak. Also we have studied the effect of the film thickness on the PL intensity and we have observed an optimal film thickness.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below.

References

Rahman, M. M., Yang, C. Y., Sugiarto, D., Byrne, A. S., Ju, M., Tran, K., ...&Stickle, W. F. (1990) J. Appl. Phys. 67(11), 7065-7070.CrossRefGoogle Scholar
Canham, L T 1990 Appl. Phys. Lett. 57 1046.CrossRefGoogle Scholar
Zhao, X., Schoenfeld, O., Kusano, J., Aoyagi, Y., & Sugano, T. (1994) J. Appl. Phys. 33(5A), L649.CrossRefGoogle Scholar
Gallis, S., Nikas, V., Suhag, H., Huang, M., &Kaloyeros, A. E. (2010) J. Appl. Phys. 97(8), 081905.Google Scholar
Zhang, E., Wang, G., Long, X., & Wang, Z. (2014) B. Mater SCI, 37(6), 1249-1253.CrossRefGoogle Scholar
Cheng, Q., Xu, S., Long, J. D., Ni, Z. H., Rider, A. E., & Ostrikov, K. (2008) J. Appl. Phys. 41(5), 055406.Google Scholar
Daouahi, M., Rekik, N. J. Phys. Chem. C 116(39) (2012)2101921025.CrossRefGoogle Scholar
Swain, B. P. (2006) Surf. Coatings Tech. 201(3-4), 1589-1593.CrossRefGoogle Scholar
Daves, W., Krauss, A., Behnel, N., Häublein, V., Bauer, A., Frey, L. Thin Solid Films 519 (18) (2011) 58925898.CrossRefGoogle Scholar
Vivaldo, I., Moreno, M., Torres, A., Ambrosio, R., Rosales, P., Carlos, N., ...&Benítez, A. (2017) J. Lumin. 190, 215-220.CrossRefGoogle Scholar
Swain, B. Surf. Coatings Tech. 201(3-4)(2006)15891591.CrossRefGoogle Scholar
Tanaka, K. (1999). Amorphous silicon. John Wiley & Sons Inc.Google Scholar
Choi, W. K., & Gangadharan, S. (2000) Mater. Sci. Eng. B, 75(2-3), 174-176.CrossRefGoogle Scholar
Summonte, C., Rizzoli, R., Bianconi, M., Desalvo, A., Iencinella, D., & Giorgis, F. (2004) J. Appl. Phys. 96(7), 3987-3997.CrossRefGoogle Scholar
Li, M., Jiang, L., Sun, Y., Xiao, T., Xiang, P., & Tan, X. (2018) J. Alloys Compd. 753, 320-328.CrossRefGoogle Scholar
Pereyra, I., & Carreno, M. N. P. (1996) J. non-cryst. solids, 201(1-2), 110-118.CrossRefGoogle Scholar
Daves, W., Krauss, A., Behnel, N., Häublein, V., Bauer, A., Frey, L. Thin Solid Films 519(18) (2011) 58925898.CrossRefGoogle Scholar
Choi, W.K., Chan, Y.M., Ling, C.H., Lee, Y., Gopalakrishnan, R., Tan, K.L., J. Appl. Phys. 77 (2) (1995) 827.CrossRefGoogle Scholar
Sel, K., Akaoğlu, B., Atilgan, İ., &Katircioğlu, B. (2011). Solid-State Electronics, 57(1), 1-8.CrossRefGoogle Scholar
Street, R. A., Nickel, N. H., & Tsai, C. C. (1995). J. non-cryst. solids, 190(1-2), 33-37.CrossRefGoogle Scholar
Choi, W., Ong, T., Tan, L., Loh, F., and Tan, K., Journal of applied physics, vol. 83, no. 9, pp. 49684973, 1998.CrossRefGoogle Scholar
Yu, M., Yoon, S., Xu, S., Chew, K., Cui, J., Ahn, J., Zhang, Q., et al. , Thin Solid Films, vol. 377, pp. 177181, 2000.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 24 *
View data table for this chart

* Views captured on Cambridge Core between 16th January 2019 - 21st January 2021. This data will be updated every 24 hours.

Hostname: page-component-76cb886bbf-r88h9 Total loading time: 0.319 Render date: 2021-01-21T09:28:53.850Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Study and optimization of the photoluminescence of amorphous silicon carbide thin films
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Study and optimization of the photoluminescence of amorphous silicon carbide thin films
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Study and optimization of the photoluminescence of amorphous silicon carbide thin films
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *