Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-21T06:58:52.263Z Has data issue: false hasContentIssue false

Solvent-based Fabrication Method for Magnetic, Shape-Memory Nanocomposite Foams

Published online by Cambridge University Press:  15 November 2019

Karola Luetzow
Affiliation:
Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
Thomas Weigel
Affiliation:
Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
Andreas Lendlein*
Affiliation:
Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany Institute of Chemistry, University of Potsdam, Potsdam, Germany
*
*Correspondence to: Prof. Andreas Lendlein andreas.lendlein@hzg.de
Get access

Abstract

This paper presents shape-memory foams that can be temporarily fixed in their compressed state and be expanded on demand. Highly porous, nanocomposite foams were prepared from a solution of polyetherurethane with suspended nanoparticles (mean aggregate size 90 nm) which have an iron(III) oxide core with a silica shell. The polymer solution with suspended nanoparticles was cooled down to -20 °C in a two-stage process, which was followed by freeze-drying. The average pore size increases with decreasing concentration of nanoparticles from 158 µm to 230 µm while the foam porosity remained constant. After fixation of a temporary form of the nanocomposite foams, shape recovery can be triggered either by heat or by exposure to an alternating magnetic field. Compressed foams showed a recovery rate of up to 76 ± 4% in a thermochamber at 80 °C, and a slightly lower recovery rate of up to 65 ± 4% in a magnetic field.

Type
Articles
Copyright
Copyright © Materials Research Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Meng, H. and Li, G. Q., Polymer 54 (9), 2199-2221 (2013).CrossRefGoogle Scholar
Serrano, M. C. and Ameer, G. A., Macromolecular Bioscience 12 (9), 1156-1171 (2012).CrossRefGoogle Scholar
Wu, X., Huang, W. M., Zhao, Y., Ding, Z., Tang, C. and Zhang, J., Polymers 5 (4), 1169-1202 (2013).CrossRefGoogle Scholar
Beloshenko, V. A., Varyukhin, V. N. and Voznyak, Y. V., Russian Chemical Reviews 74 (3), 265-283 (2005).CrossRefGoogle Scholar
Lendlein, A. and Gould, O. E. C., Nat Rev Mater 4 (2), 116-133 (2019).CrossRefGoogle Scholar
Mohr, R., Kratz, K., Weigel, T., Lucka-Gabor, M., Moneke, M. and Lendlein, A., PNAS 103 (10), 3540-3545 (2006).CrossRefGoogle Scholar
Lendlein, A. and Langer, R., Science 296 (5573), 1673-1676 (2002).CrossRefGoogle Scholar
Behl, M., Razzaq, M. Y. and Lendlein, A., Adv. Mater. 22 (31), 3388-3410 (2010).CrossRefGoogle Scholar
Sauter, T., Lutzow, K., Schossig, M., Kosmella, H., Weigel, T., Kratz, K. and Lendlein, A., Adv. Eng. Mater. 14 (9), 818-824 (2012).CrossRefGoogle Scholar
Wang, S.-Q., Kaneko, D., Okajima, M., Yasaki, K., Tateyama, S. and Kaneko, T., Angew. Chem. Int. Ed. 52 (42), 11143-11148 (2013).CrossRefGoogle Scholar
Jiang, H. Y., Kelch, S. and Lendlein, A., Adv. Mater. 18 (11), 1471-1475 (2006).CrossRefGoogle Scholar
Habault, D., Zhang, H. and Zhao, Y., Chemical Society Reviews 42 (17), 7244-7256 (2013).CrossRefGoogle Scholar
Razzaq, M. Y., Behl, M. and Lendlein, A., Adv. Funct. Mater. 22 (1), 184-191 (2012).CrossRefGoogle Scholar
Yu, X. J., Zhou, S. B., Zheng, X. T., Guo, T., Xiao, Y. and Song, B. T., Nanotechnology 20 (23) (2009).Google Scholar
Thevenot, J., Oliveira, H., Sandre, O. and Lecommandoux, S., Chemical Society Reviews 42 (17), 7099-7116 (2013).CrossRefGoogle Scholar
Razzaq, M. Y., Behl, M., Kratz, K. and Lendlein, A., Adv. Mater. 25 (40), 5730-+ (2013).CrossRefGoogle Scholar
Wang, L., Razzaq, M. Y., Rudolph, T., Heuchel, M., Nochel, U., Mansfeld, U., Jiang, Y., Gould, O. E. C., Behl, M., Kratz, K. and Lendlein, A., Mater Horiz 5 (5), 861-867 (2018).CrossRefGoogle Scholar
Weigel, T., Mohr, R. and Lendlein, A., Smart Mater. Struct. 18 (2), 025011 (2009).CrossRefGoogle Scholar
Hearon, K., Singhal, P., Horn, J., Small, W., Olsovsky, C., Maitland, K. C., Wilson, T. S. and Maitland, D. J., Polymer Reviews 53 (1), 41-75 (2013).CrossRefGoogle Scholar
Metcalfe, A., Desfaits, A. C., Salazkin, I., Yahia, L., Sokolowski, W. M. and Raymond, J., Biomaterials 24 (9), 1681-1681 (2003).CrossRefGoogle Scholar
De Nardo, L., Bertoldi, S., Cigada, A., Tanzi, M. C., Haugen, H. J. and Fare, S., JABFM 10 (2), 119-126 (2012).CrossRefGoogle Scholar
Kim, H. M., Huang, Z. M., Kim, J. S., Youn, J. R. and Song, Y. S., Eur. Polym. J. 106, 188-195 (2018).CrossRefGoogle Scholar
Wang, J. Y., Luo, J. S., Kunkel, R., Saha, M., Bohnstedt, B. N., Lee, C. H. and Liu, Y. T., Mater. Lett. 250, 38-41 (2019).CrossRefGoogle Scholar
Wang, J. Y., Kunkel, R., Luo, J. S., Li, Y. H., Liu, H., Bohnstedt, B. N., Liu, Y. T. and Lee, C. H., Polymers 11 (4), 14 (2019).Google ScholarPubMed
Kang, S. M., Lee, S. J. and Kim, B. K., Express Polym. Lett. 6 (1), 63-69 (2012).CrossRefGoogle Scholar
Kang, S. M., Kim, M. J., Kwon, S. H., Park, H., Jeong, H. M. and Kim, B. K., J. Mater. Sci 27 (22), 2837-2843 (2012).Google Scholar
Simkevitz, S. L. and Naguib, H. E., High Perform. Polym. 22 (2), 159-183 (2010).CrossRefGoogle Scholar
Kalita, H. and Karak, N., JNN 14 (7), 5435-5442 (2014).CrossRefGoogle Scholar
Xie, R. Q., Hu, J. L., Ng, F., Tan, L., Qin, T. W., Zhang, M. Q. and Guo, X., Ceram. Int. 43 (6), 4794-4802 (2017).CrossRefGoogle Scholar
Luetzow, K., Klein, F., Weigel, T., Apostel, R., Weiss, A. and Lendlein, A., J. Biomech. 40, S80-S88 (2007).CrossRefGoogle Scholar
Rowlands, A. S., Lim, S. A., Martin, D. and Cooper-White, J. J., Biomaterials 28 (12), 2109-2121 (2007).CrossRefGoogle Scholar
Gong, Y. H., Ma, Z. W., Gao, C. Y., Wang, W. and Shen, J. C., J Appl Polym Sci 101 (5), 3336-3342 (2006).CrossRefGoogle Scholar