Skip to main content Accessibility help
×
Home
Hostname: page-component-54cdcc668b-pb9vg Total loading time: 1.648 Render date: 2021-03-08T22:43:18.340Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Article contents

Small Molecule with Extended Alkyl Side Substituents for Organic Solar Cells

Published online by Cambridge University Press:  27 December 2016

Chenyu Zheng
Affiliation:
Microsystems Engineering, Rochester Institute of Technology, Rochester, NY 14623, U.S.A. School of Chemistry and Materials Science (SCMS), Rochester Institute of Technology, Rochester, NY 14623, U.S.A. NanoPower Research Laboratory (NPRL), Rochester Institute of Technology, Rochester, NY 14623, U.S.A.
Ishita Jalan
Affiliation:
School of Chemistry and Materials Science (SCMS), Rochester Institute of Technology, Rochester, NY 14623, U.S.A.
Jeremy A. Cody
Affiliation:
School of Chemistry and Materials Science (SCMS), Rochester Institute of Technology, Rochester, NY 14623, U.S.A.
Christopher J. Collison
Affiliation:
Microsystems Engineering, Rochester Institute of Technology, Rochester, NY 14623, U.S.A. School of Chemistry and Materials Science (SCMS), Rochester Institute of Technology, Rochester, NY 14623, U.S.A. NanoPower Research Laboratory (NPRL), Rochester Institute of Technology, Rochester, NY 14623, U.S.A.
Corresponding
E-mail address:
Get access

Abstract

In this work, we have investigated two aniline based squaraine molecules, DBSQ(OH)2 and DHSQ(OH)2, for their potential application in organic photovoltaics. These two squaraine molecules are only different in side chain length (i.e. butyl vs. hexyl). Yet, their solar cell properties are drastically different (PCE = 3.6% vs. 1.9%). We have further investigated the reason behind the superior performance of DBSQ(OH)2 in absorbance spectra, hole mobility characterization and transmission electron microscopy. The results show that DBSQ(OH)2 has a higher hole mobility (5.1×10-4 cm2/V•s vs. 1.4×10-4 cm2/V•s) and is able to mix well with the fullerene acceptor compared to DHSQ(OH)2. Our work shows clearly that the long solubilizing alkyl side chain might be detrimental for OPV performance and that shorter side chains with enough solubility have great value when designing small molecules.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below.

References

Yang, D., Jiao, Y., Yang, L., Chen, Y., Mizoi, S., Huang, Y., Pu, X., Lu, Z., Sasabe, H. and Kido, J., J. Mater. Chem. A, 2015, 3, 1770417712.CrossRef
Yang, D., Yang, Q., Yang, L., Luo, Q., Huang, Y., Lu, Z. and Zhao, S., Chem. Commun., 2013, 49, 1046510467.CrossRef
Wei, G., Wang, S., Sun, K., Thompson, M. E. and Forrest, S. R., Adv. Energy Mater., 2011, 1, 184187.CrossRef
Chen, G., Sasabe, H., Wang, Z., Wang, X.-F., Hong, Z., Yang, Y. and Kido, J., Adv. Mater., 2012, 24, 27682773.CrossRef
Zheng, C., Penmetcha, A. R., Cona, B., Spencer, S. D., Zhu, B., Heaphy, P., Cody, J. A. and Collison, C. J., Langmuir, 2015, 31, 77177726.CrossRef
Yang, D., Jiao, Y., Huang, Y., Zhuang, T., Yang, L., Lu, Z., Pu, X., Sasabe, H. and Kido, J., Org. Electron., 2016, 32, 179186.CrossRef
Yang, D., Zhu, Y., Jiao, Y., Yang, L., Yang, Q., Luo, Q., Pu, X., Huang, Y., Zhao, S. and Lu, Z., RSC Adv., 2015, 5, 2072420733.CrossRef
Liu, X., Sun, Y., Hsu, B. B. Y., Lorbach, A., Qi, L., Heeger, A. J. and Bazan, G. C., J. Am. Chem. Soc., 2014, 136, 56975708.CrossRef
Liu, X., Hsu, B. B. Y., Sun, Y., Mai, C.-K., Heeger, A. J. and Bazan, G. C., J. Am. Chem. Soc., 2014, 136, 1614416147.CrossRef
Gadisa, A., Oosterbaan, W. D., Vandewal, K., Bolsée, J.-C., Bertho, S., D’Haen, J., Lutsen, L., Vanderzande, D. and Manca, J. V., Adv. Funct. Mater., 2009, 19, 33003306.CrossRef
Deing, K. C., Mayerhoffer, U., Wurthner, F. and Meerholz, K., Phys. Chem. Chem. Phys., 2012, 14, 83288334.CrossRef
Hestand, N. J., Zheng, C., Penmetcha, A. R., Cona, B., Cody, J. A., Spano, F. C. and Collison, C. J., J. Phys. Chem. C, 2015, 119, 1896418974.CrossRef
Law, K. Y., J. Phys. Chem., 1989, 93, 59255930.CrossRef
Law, K.-Y., J. Phys. Chem., 1995, 99, 98189824.CrossRef
Chen, G., Sasabe, H., Sasaki, Y., Katagiri, H., Wang, X.-F., Sano, T., Hong, Z., Yang, Y. and Kido, J., Chem. Mater., 2014, 26, 13561364.CrossRef
Zheng, C., Bleier, D., Jalan, I., Pristash, S., Penmetcha, A. R., Hestand, N. J., Spano, F. C., Pierce, M. S., Cody, J. A. and Collison, C. J., Sol. Energy Mater. Sol. Cells, 2016, 157, 366376.CrossRef
Blom, P. W. M., de Jong, M. J. M. and Vleggaar, J. J. M., Appl. Phys. Lett., 1996, 68, 3308.CrossRef
Proctor, C. M., Love, J. A. and Nguyen, T.-Q., Adv. Mater., 2014, 26, 59575961.CrossRef
Spencer, S. D., Bougher, C., Heaphy, P. J., Murcia, V. M., Gallivan, C. P., Monfette, A., Andersen, J. D., Cody, J. A., Conrad, B. R. and Collison, C. J., Sol. Energy Mater. Sol. Cells, 2013, 112, 202208.CrossRef
Mihailetchi, V. d., van Duren, J. k. j., Blom, P. w. m., Hummelen, J. c., Janssen, R. a. j., Kroon, J. m., Rispens, M. t., Verhees, W. j. h. and Wienk, M. m., Adv. Funct. Mater., 2003, 13, 4346.CrossRef
Gadisa, A., Mammo, W., Andersson, L. M., Admassie, S., Zhang, F., Andersson, M. R. and Inganäs, O., Adv. Funct. Mater., 2007, 17, 38363842.CrossRef
Chen, G., Sasabe, H., Wang, Z., Wang, X., Hong, Z., Kido, J. and Yang, Y., Phys. Chem. Chem. Phys., 2012, 14, 1466114666.CrossRef

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 49 *
View data table for this chart

* Views captured on Cambridge Core between 27th December 2016 - 8th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Small Molecule with Extended Alkyl Side Substituents for Organic Solar Cells
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Small Molecule with Extended Alkyl Side Substituents for Organic Solar Cells
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Small Molecule with Extended Alkyl Side Substituents for Organic Solar Cells
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *