Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-xbbwl Total loading time: 0.773 Render date: 2021-03-02T03:32:38.258Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Article contents

Microstructure and Mechanical property of Porous Nickel aluminides Fabricated by Reactive Synthesis with Space Holder Powder

Published online by Cambridge University Press:  25 March 2019

Yunmao Shu
Affiliation:
Department of Materials Science and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603Japan
Asuka Suzuki
Affiliation:
Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603Japan
Naoki Takata
Affiliation:
Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603Japan
Makoto Kobashi
Affiliation:
Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603Japan
Corresponding
Get access

Abstract

Effect of Ni:Al blending ratio on porous structure of porous nickel aluminides fabricated through reactive synthesis with space holder particles were investigated. Fabricated porous nickel aluminides had large pores derived from NaCl space holder particles and small pores derived from reactions between Ni and Al. Porosity and size of the small pores increased with increasing Al content in the raw powder mixture. Compressive property of porous NiAl are also investigated. porous NiAl exhibited good energy-absorption properties with relatively high plateau stress, high plateau end strain, and relatively flat plateau stress. This study suggests the possibility of intermetallic-based porous materials as high-performance energy absorber.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below.

References

Banhart, J., Progress in Materials Science 46 559-632 (2001).10.1016/S0079-6425(00)00002-5CrossRefGoogle Scholar
Moreno, F. G., Materials 9(2) 85 (2016).CrossRefGoogle Scholar
Adeli, M. Seyedein, S.H., Aboutalebi, M.R., Kobashi, M., Kanetake, N. Journal of Alloys and Compounds 497 100-104 (2010).10.1016/j.jallcom.2010.03.050CrossRefGoogle Scholar
Shu, Y., Suzuki, A., Takata, N., Kobashi, M., Journal of Materials Processing Tech. 264 182-189 (2019).10.1016/j.jmatprotec.2018.09.010CrossRefGoogle Scholar
Okamoto, H., J. Ph. Equilib. 14 257-259 (1993).CrossRefGoogle Scholar
International Organization for Standardization: Metallic materials-Ductility testing- Compression test for porous and cellular metals, ISO 13314 (2011).Google Scholar
Wu, J., Cui, H., Cao, L.L., Gu, Z.Z., Trans. Nonferrous Met. Soc. China 21 1750-1754 (2011).CrossRefGoogle Scholar
He, Y., Jiang, Y., Xu, N., Zou, J., Adv. Mater. 19 (2007) 2102-2106.10.1002/adma.200602398CrossRefGoogle Scholar
Takata, N., Uematsu, K, Kobashi, M., Materials Science & Engineering A 697 (2017) 66-70.10.1016/j.msea.2017.05.015CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 25 *
View data table for this chart

* Views captured on Cambridge Core between 25th March 2019 - 2nd March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Microstructure and Mechanical property of Porous Nickel aluminides Fabricated by Reactive Synthesis with Space Holder Powder
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Microstructure and Mechanical property of Porous Nickel aluminides Fabricated by Reactive Synthesis with Space Holder Powder
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Microstructure and Mechanical property of Porous Nickel aluminides Fabricated by Reactive Synthesis with Space Holder Powder
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *