Skip to main content Accessibility help
×
Home

Article contents

Magnesium-based Biodegradable Materials for Biomedical Applications

Published online by Cambridge University Press:  08 June 2018

Chaoxing Zhang
Affiliation:
Materials Science and Engineering Program, University of California at Riverside, 900 University Avenue, Riverside, CA92521, United States
Jiajia Lin
Affiliation:
Materials Science and Engineering Program, University of California at Riverside, 900 University Avenue, Riverside, CA92521, United States
Huinan Liu
Affiliation:
Materials Science and Engineering Program, University of California at Riverside, 900 University Avenue, Riverside, CA92521, United States Department of Bioengineering, University of California at Riverside, 900 University Avenue, Riverside, CA92521, United States Biomedical Sciences Program, School of Medicine, University of California at Riverside, 900 University Avenue, Riverside, CA92521, United States Stem Cell Center, University of California at Riverside, 900 University Avenue, Riverside, CA92521, USA
Corresponding
E-mail address:
Get access

Abstract

Magnesium (Mg)-based biomaterials have attracted increasing attention in biomedical applications, such as orthopaedic, cardiovascular, urological, and neural applications because of the biocompatibility, biodegradability, antibacterial properties, and excellent mechanical properties. However, rapid degradation of Mg is the major concern for many clinical applications. Alloying Mg with other elements and engineering proper surfaces are the two approaches to control the degradation of Mg-based biomaterials. Our lab has investigated several classes of Mg-based biodegradable alloys and various surface treatment methods for medical implant and device applications. This mini-review highlights key research progress on Mg-based biomaterials and suggests future directions for Mg-based biomaterials.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below.

References

Cipriano, A. F., Sallee, A., Guan, R. G., Zhao, Z. Y., Tayoba, M., Sanchez, J. and Liu, H. N., Acta Biomater 12, 298321 (2015).CrossRefGoogle Scholar
Zhang, Y., Xu, J., Ruan, Y. C., Yu, M. K., O’Laughlin, M., Wise, H., Chen, D., Tian, L., Shi, D., Wang, J., Chen, S., Feng, J. Q., Chow, D. H., Xie, X., Zheng, L., Huang, L., Huang, S., Leung, K., Lu, N., Zhao, L., Li, H., Zhao, D., Guo, X., Chan, K., Witte, F., Chan, H. C., Zheng, Y. and Qin, L., Nat Med 22(10), 11601169 (2016).CrossRefGoogle Scholar
Jiang, W. S., Tian, Q. M., Vuong, T., Shashaty, M., Gopez, C., Sanders, T. and Liu, H. N., Acs Biomater Sci Eng 3(6), 936950 (2017).CrossRefGoogle Scholar
Lock, J. Y., Wyatt, E., Upadhyayula, S., Whall, A., Nunez, V., Vullev, V. I. and Liu, H., J Biomed Mater Res A 102(3), 781792 (2014).CrossRefGoogle Scholar
Zhang, C., Driver, N., Tian, Q., Jiang, W. and Liu, H., J Biomed Mater Res A 0(0) (2018).Google Scholar
Sebaa, M., Nguyen, T. Y., Dhillon, S., Garcia, S. and Liu, H. N., J Biomed Mater Res A 103(1), 2537 (2015).CrossRefGoogle Scholar
Johnson, I., Akari, K. and Liu, H. N., Nanotechnology 24(37) (2013).CrossRefGoogle Scholar
Cipriano, A. F., Sallee, A., Guan, R. G., Lin, A. and Liu, H. N., Acs Biomater Sci Eng 3(4), 540550 (2017).CrossRefGoogle Scholar
Guan, R. G., Cipriano, A. F., Zhao, Z. Y., Lock, J., Tie, D., Zhao, T., Cui, T. and Liu, H. N., Mater Sci Eng C Mater Biol Appl 33(7), 36613669 (2013).CrossRefGoogle Scholar
Johnson, I. and Liu, H., Plos One 8(6) (2013).CrossRefGoogle Scholar
Bagherifard, S., Hickey, D. J., Fintová, S., Pastorek, F., Fernandez-Pariente, I., Bandini, M., Webster, T. J. and Guagliano, M., Acta Biomater 66, 93108 (2018).CrossRefGoogle Scholar
Wang, X. J., Xu, D. K., Wu, R. Z., Chen, X. B., Peng, Q. M., Jin, L., Xin, Y. C., Zhang, Z. Q., Liu, Y., Chen, X. H., Chen, G., Deng, K. K. and Wang, H. Y., J Mater Sci Technol (2017).Google Scholar
Zhang, J., Hiromoto, S., Yamazaki, T., Niu, J., Huang, H., Jia, G., Li, H., Ding, W. and Yuan, G., J Biomed Mater Res A 104(10), 24762487 (2016).CrossRefGoogle Scholar
Johnson, I., Wang, S. M., Silken, C. and Liu, H., Acta Biomater 36, 332349 (2016).CrossRefGoogle Scholar
Zhao, D. W., Witte, F., Lu, F. Q., Wang, J. L., Li, J. L. and Qin, L., Biomaterials 112, 287302 (2017).CrossRefGoogle Scholar
Witecka, A., Yamamoto, A. and Swieszkowski, W., Colloids Surf B Biointerfaces 150, 288296 (2017).CrossRefGoogle Scholar
Jiang, W., Cipriano, A. F., Tian, Q., Zhang, C., Lopez, M., Sallee, A., Lin, A., Alcaraz, M. C. C., Wu, Y., Zheng, Y. and Liu, H., Acta Biomater (2018).Google Scholar
Tian, Q. and Liu, H., Nanotechnology 26(17) (2015).Google Scholar
Cipriano, A. F., Lin, J. J., Miller, C., Lin, A., Alcaraz, M. C. C., Soria, P. and Liu, H. N., Acta Biomater 62, 397417 (2017).CrossRefGoogle Scholar
Johnson, I., Perchy, D. and Liu, H., J Biomed Mater Res A 100A (2), 477485 (2012).CrossRefGoogle Scholar
Johnson, I., Jiang, W. S. and Liu, H. N., Sci Rep 7 (2017).Google Scholar
Tian, Q. M., Deo, M., Rivera-Castaneda, L. and Liu, H. N., Acs Biomater Sci Eng 2(9), 15591571 (2016).CrossRefGoogle Scholar
Guan, R. G., Johnson, I., Cui, T., Zhao, T., Zhao, Z. Y., Li, X. and Liu, H. N., J Biomed Mater Res A 100a (4), 999-1015 (2012).CrossRefGoogle Scholar
Cipriano, A. F., Zhao, T., Johnson, I., Guan, R.-G., Garcia, S. and Liu, H., J Mater Sci Mater Med 24(4), 9891003 (2013).CrossRefGoogle Scholar
Nguyen, T. Y., Cipriano, A. F., Guan, R.-G., Zhao, Z.-Y. and Liu, H., J Biomed Mater Res A 103(9), 29742986 (2015).CrossRefGoogle Scholar
Cipriano, A. F., Lin, J. J., Lin, A., Sallee, A., Le, B., Alcaraz, M. C. C., Guan, R. G., Botimer, G., Inceoglu, S. and Liu, H. N., ACS Appl Mater Interfaces 9(51), 4433244355 (2017).CrossRefGoogle Scholar
Cipriano, A. F., Sallee, A., Tayoba, M., Alcaraz, M. C. C., Lin, A., Guan, R. G., Zhao, Z. Y. and Liu, H. N., Acta Biomater 48, 499520 (2017).CrossRefGoogle Scholar
Tie, D., Guan, R. G., Liu, H. N., Cipriano, A., Liu, Y. L., Wang, Q., Huang, Y. D. and Hort, N., Acta Biomater 29, 455467 (2016).CrossRefGoogle Scholar
Tian, Q. M., Rivera-Castaneda, L. and Liu, H. N., Mater Lett 186, 1216 (2017).CrossRefGoogle Scholar
Liu, H., J Biomed Mater Res A 99A (2), 249260 (2011).CrossRefGoogle Scholar
Thanh Yen, N., Liew, C. G. and Liu, H., Plos One 8(10) (2013).Google Scholar
Sebaa, M. A., Dhillon, S. and Liu, H., J Mater Sci Mater Med 24(2), 307316 (2013).CrossRefGoogle Scholar
Iskandar, M. E., Aslani, A. and Liu, H., J Biomed Mater Res A 101(8), 23402354 (2013).CrossRefGoogle Scholar
Iskandar, M. E., Aslani, A., Tian, Q. and Liu, H., J Mater Sci Mater Med 26(5) (2015).CrossRefGoogle Scholar
Masuda, H., Hasegwa, F. and Ono, S., J Electrochem Soc 144(5), L127L130 (1997).CrossRefGoogle Scholar
Zwilling, V., Aucouturier, M. and Darque-Ceretti, E., Electrochim Acta 45(6), 921929 (1999).CrossRefGoogle Scholar
Sieber, I., Hildebrand, H., Friedrich, A. and Schmuki, P., Electrochem commun 7(1), 97100 (2005).CrossRefGoogle Scholar
Minagar, S., Berndt, C. C., Wang, J., Ivanova, E. and Wen, C., Acta Biomater 8(8), 28752888 (2012).CrossRefGoogle Scholar
Liu, H. and Webster, T. J., Biomaterials 28(2), 354369 (2007).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 33 *
View data table for this chart

* Views captured on Cambridge Core between 08th June 2018 - 16th January 2021. This data will be updated every 24 hours.

Hostname: page-component-77fc7d77f9-zjqt5 Total loading time: 0.313 Render date: 2021-01-16T09:55:28.230Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Sat Jan 16 2021 09:52:45 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": true, "languageSwitch": true, "figures": false, "newCiteModal": false, "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Magnesium-based Biodegradable Materials for Biomedical Applications
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Magnesium-based Biodegradable Materials for Biomedical Applications
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Magnesium-based Biodegradable Materials for Biomedical Applications
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *