Skip to main content Accessibility help
×
Home
Hostname: page-component-5bf98f6d76-gckwl Total loading time: 13.656 Render date: 2021-04-21T05:54:15.924Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Article contents

Choice of Polymer Matrix for a Fast Switchable III-V Nanowire Terahertz Modulator

Published online by Cambridge University Press:  03 April 2017

Sarwat A. Baig
Affiliation:
Department of Engineering, University of Cambridge, Electrical Engineering Building, 9 JJ Thomson Avenue, Cambridge, CB3 0FA, UK
Jessica L. Boland
Affiliation:
Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK.
Djamshid A. Damry
Affiliation:
Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK.
Hoe H Tan
Affiliation:
Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200, Australia
Chennupati Jagadish
Affiliation:
Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200, Australia
Michael B. Johnston
Affiliation:
Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK.
Hannah J Joyce
Affiliation:
Department of Engineering, University of Cambridge, Electrical Engineering Building, 9 JJ Thomson Avenue, Cambridge, CB3 0FA, UK
Corresponding
E-mail address:
Get access

Abstract

Progress in ultrafast terahertz (THz) communications has been limited due to the lack of picosecond switchable modulators with sufficient modulation depth. Gallium arsenide nanowires are ideal candidates for THz modulators as they absorb THz radiation, only when photoexcited – giving the potential for picosecend speed switching and high modulation depth. By embedding the nanowires in a polymer matrix and laminating together several nanowire–polymer films, we increase the areal density of nanowires, resulting in greater modulation of THz radiation. In this paper, we compare PDMS and Parylene C polymers for nanowire encapsulation and show that a high modulation depth is possible using Parylene C due to its thinness and its ability to be laminated. We characterize the modulator behavior and switching speed using optical pump–THz probe spectroscopy, and demonstrate a parylene–nanowire THz modulator with 13.5% modulation depth and 1ps switching speed.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below.

References

Tonouchi, M., Nat. Photonics. 1, 97 (2007).CrossRef
Johnston, M. B., Dowd, A., Driver, R., Linfield, E. H., Davies, A. G., and Whittaker, D. M., Semicond. Sci. Technol. 19, S449 (2004).CrossRef
Peng, K., Parkinson, P., Fu, L., Gao, Q., Jiang, N., Guo, Y., Wang, F., Joyce, H. J., Boland, J. L., Tan, H. H., Jagadish, C., and Johnston, M. B., Nano Lett. 15, 206 (2015).CrossRef
Kleine-Ostmann, T. and Nagatsuma, T., J Infrared Milli Terahz Waves. 32, 143 (2011).CrossRef
Rahm, M., Li, J., and Padilla, W. J., J Infrared Milli Terahz Waves, 34, 1 (2013).CrossRef
Liang, G., Hu, X., Yu, X., Shen, Y., Li, L. H., Davies, A. G., Linfield, E. H., Liang, H. K., Zhang, Y., Yu, S. F., and Wang, Q. J., ACS Photonics. 2, 1559 (2015).CrossRef
Docherty, C. J., Stranks, S. D., Habisreutinger, S. N., Joyce, H. J., Herz, L. M., Nicholas, R. J., and Johnston, M. B., J. Appl. Phys. 115, 13 (2014).CrossRef
Joyce, H. J., Boland, J. L., Davies, C. L., Joyce, H. J., Docherty, C. J., Gao, Q., and Tan, H. H., Nanotech. 7, 214006 (2013).CrossRef
Joyce, H. J., Gao, Q., Tan, H. H., Jagadish, C., Kim, Y., Zou, J., Smith, L. M., Jackson, H. E., Yarrison-Rice, J. M., Parkinson, P., and Johnston, M. B., Prog. Quantum Electron. 35, 23 ( 2011).CrossRef
Parkinson, P., Joyce, H. J., Gao, Q., Tan, H. H., Zhang, X., Zou, J., Jagadish, C., Herz, L. M., and Johnston, M. B., Nano Lett. 9, 1 (2009).CrossRef
Parkinson, P., Lloyd-hughes, J., Gao, Q., Tan, H. H., Jagadish, C., Johnston, M. B., and Herz, L. M., Nano Lett. 7, 2162 (2007).CrossRef
Meng, E., Li, P.-Y., and Tai, Y.-C., J. Micromech. Microeng. 18, 45004, (2008).CrossRef
Park, H., Seo, K., and Crozier, K. B., Appl. Phys. Lett. 101, 193107 (2012).CrossRef
Noh, H., Moon, K., Cannon, A., Hesketh, P. J., and Wong, C. P., J. Micromech. Microeng. 14, 625 (2004).CrossRef
Joyce, H. J., Parkinson, P., Jiang, N., Docherty, C. J., Gao, Q., Tan, H. H., Jagadish, C., Herz, L. M., and Johnston, M. B., Nano Letts. 14, 5989 (2014).CrossRef
Joyce, H. J., Boland, J. L., Davies, C. L., Baig, S. A., and Johnston, M. B., Semicond. Sci. Technol. 31,1 (2016).CrossRef
Titova, L. V, Hoang, T. B., Jackson, H. E., Joyce, L. M. S. M. Y. K. J., Tan, H. H., Jagadish, C., V Titova, L., Hoang, T. B., Jackson, H. E., Smith, L. M., and Kim, Y., Appl. Phys. Lett., 1, 173126 (2006).CrossRef

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 39 *
View data table for this chart

* Views captured on Cambridge Core between 03rd April 2017 - 21st April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Choice of Polymer Matrix for a Fast Switchable III-V Nanowire Terahertz Modulator
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Choice of Polymer Matrix for a Fast Switchable III-V Nanowire Terahertz Modulator
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Choice of Polymer Matrix for a Fast Switchable III-V Nanowire Terahertz Modulator
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *