Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-25T06:03:34.242Z Has data issue: false hasContentIssue false

Water-undersaturated melting experiments bearing upon the origin of potassium-rich magmas

Published online by Cambridge University Press:  05 July 2018

Michael Barton
Affiliation:
Vening Meinesz Laboratory, Department of Geochemistry, Institute of Earth Sciences, State University of Utrecht, Budapestlaan 4, 3584 CD Utrecht, The Netherlands
D. L. Hamilton
Affiliation:
Department of Geology, University of Manchester, Manchester M13 9PL, UK

Abstract

The water-undersaturated melting relationships of an orendite (with 1.23% H2O as shown by chemical analysis) from the Leucite Hills, Wyoming, have been determined at pressures up to 30 kbar. The dominant liquidus and near-liquidus phases are leucite, olivine, orthopyroxene, clinopyroxene, and garnet. Leucite is stable only at pressures below 5 kbar, but at 27 kbar, minor olivine, orthopyroxene, clinopyroxene, and garnet crystallize simultaneously at or near the liquidus. The following reaction relationships occur with falling temperature in the orendite magma: (a) a reaction between olivine and melt to yield orthopyroxene at pressures above 12 kbar; (b) a reaction between olivine and melt to yield phlogopite at pressures below 12 kbar; (c) a reaction between olivine, orthopyroxene and melt to yield phlogopite and probably clinopyroxene at pressures above 12 kbar; (d) a reaction between leucite and melt to yield sanidine at pressures below 5 kbar. Electron microprobe analyses demonstrate that the ortho- and clinopyroxenes crystallized from orendite are aluminium-poor; the clinopyroxenes contain insufficient aluminium to balance sodium and titanium (Al < Na+2Ti) and these elements must either be partly balanced by (undetermined) chromium or ferric iron or be involved in substitutions which do not require trivalent ions for charge balance. The experimental results indicate that relatively silica-rich potassic magmas such as orendite form under water-undersaturated (essentially carbon dioxide free) conditions at pressures of about 27 kbar by small degrees of melting of phlogopite-garnet-lherzolite or by larger degrees of melting of peridotite which has been enriched in potassium and incompatible elements. The peralkalinity of some potassic magmas (such as orendite and wyomingite) could reflect a primary geochemical characteristic of the source rock, but could also result from the melting of phlogopite in the presence of residual pyroxenes. The association of silica-poor, mafic madupites and relatively silica-rich orendites and wyomingites in the Leucite Hills can be explained in terms of the relative effects of water and carbon dioxide on melting processes within the upper mantle.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aoki, K. (1975) Contrib. Mineral. Petrol. 53, 145-56.CrossRefGoogle Scholar
Aoki, K. and Kanisawa, S. (1979) Lithos, 12, 167-71.CrossRefGoogle Scholar
Arndt, N. T. (1977) Carnegie Inst. Washington Yearb. 76, 424-8.Google Scholar
Barbieri, M., Penta, A., and Turi, B. (1975) Contrib. Mineral. Petrol. 51, 127-33.CrossRefGoogle Scholar
Barton, M. (1979) Neues Jahrb. Mineral., Abh. 137, 113-34.Google Scholar
Barton, M. and Hamilton, D. L. (1979) Contrib. Mineral. Petrol. 69, 133-42.CrossRefGoogle Scholar
Barton, M. and Wood, B. J. (1976) In Progress in experimental petrology, 3, 901. London, NERC Publ.Google Scholar
Bender, J. F., Hodges, F. N., and Bence, A. E. (1978) Earth Planet. Sci. Lett. 41, 277-302.CrossRefGoogle Scholar
Beswick, A. E. (1976) Geochim. Cosmochim. Acta, 40, 1167-83.CrossRefGoogle Scholar
Boettcher, A. L., O'Neill, J. R., Windom, K. E., Stewart, D. C., and Wilshire, H. G. (1977) Second International Kimberlite Conference, extended abstracts. Google Scholar
Borley, G. D. (1967) Mineral. Mag. 36, 364-79.Google Scholar
Brey, G., and Green, D. H. (1977) Contrib. Mineral. Petrol. 61, 141-62.CrossRefGoogle Scholar
Carmichael, I. S. E. (1967) Ibid. 15, 24-66.Google Scholar
Carmichael, I. S. E., Turner, F. J., and Verhoogen, J. (1974) Igneous Petrology. New York, McGraw-Hill.Google Scholar
Carswell, D. A. (1975) Phys. Chem. Earth, 9, 417-29.CrossRefGoogle Scholar
Cox, K. G., Hawkesworth, C. J., O'Nions, R. K., and Appleton, J. D. (1976) Contrib. Mineral. Petrol. 56, 173-80.CrossRefGoogle Scholar
Dawson, J. B., Powell, D. G., and Reid, A. M. (1970) J. Petrol. 11, 519-48.CrossRefGoogle Scholar
Donaldson, C. H. (1979) Contrib. Mineral. Petrol. 69, 21-32.CrossRefGoogle Scholar
Edgar, A. D., and Condliffe, E. (1978) Nature, 275,639-40.CrossRefGoogle Scholar
Edgar, A. D., Green, D. H., and Hibberson, W. O. (1976) J. Petrol. 17, 339-56.CrossRefGoogle Scholar
Eggler, D. H. (1972) Earth Planet. Sci. Lett. 15, 28-34.CrossRefGoogle Scholar
Eggler, D. H. (1978) Am. J. Sci. 278, 305-43.CrossRefGoogle Scholar
Eggler, D. H. and Holloway, J. R. (1977) Oregon Dept. Geology Mineral Industries Bull. 96, 15-36.Google Scholar
Erlank, A. J., and Rickard, R. S. (1977) Second International Kimberlite Conference, extended abstracts. Google Scholar
Ferguson, A. K. (1977) Contrib. Mineral. Petrol. 60, 247-53.CrossRefGoogle Scholar
Ferguson, A. K., Cundari, A. (1975) Ibid. 50, 25-46.Google Scholar
Forbes, W. C., and Flower, M. F. J. (1974) Earth Planet. Sci. Lett. 22, 60-6.CrossRefGoogle Scholar
Gibb, F. G. F. (1974) Mineral. Mag. 39, 641-53.CrossRefGoogle Scholar
Green, D. H. (1973a) Earth Planet. Sci. Lett. 17, 456-65.CrossRefGoogle Scholar
Green, D. H. (1973b) Ibid. 19, 37-53.Google Scholar
Green, D. H. and Ringwood, A. E. (1967) Contrib. Mineral. Petrol. 15, 103-90.CrossRefGoogle Scholar
Harris, P. G. (1974) In The Alkaline Rocks (Sorensen, H., ed.), London, Wiley, 427-36.Google Scholar
Hawkesworth, C. J., and Vollmer, R. (1979) Contrib. Mineral. Petrol. 69, 151-65.CrossRefGoogle Scholar
Hensen, B. J., and Barton, M. (1976) In Progress in experimental petrology 3, 26-7. London, NERC Publ.Google Scholar
Holloway, J. R. (1973) Geochim. Cosmochim. Acta 37, 651-66.CrossRefGoogle Scholar
Holloway, J. R. and Eggler, D. H. (1976) Carnegie Inst. Washington Yearb. 75, 636-9.Google Scholar
Holloway, J. R. and Ford, C. E. (1975) Earth Planet. Sci. Lett, 25, 44-8.CrossRefGoogle Scholar
Holmes, A. (1950) Am. Mineral. 35, 772-92.Google Scholar
Ito, K., and Kennedy, G. C. (1967) Am. J. Sei. 265, 519-38.Google Scholar
Kay, R. W., and Gast, P. W. (1973) J. Geol. 81, 653-82.CrossRefGoogle Scholar
Kushiro, I. (1972) J. Petrol. 13, 311-34.CrossRefGoogle Scholar
Kushiro, I. (1975) Am. J. Sci. 275, 411-31.CrossRefGoogle Scholar
Kushiro, I., Syono, Y., and Akimoto, S. (1967) Earth Planet. Sci. Lett. 3, 197-203.CrossRefGoogle Scholar
Lloyd, F. E., and Bailey, D. K. (1975) Phys. Chem. Earth 9, 389-416.CrossRefGoogle Scholar
Longhi, J., Walker, D., and Hays, J. F. (1978) Geochim. Cosmochim. Acta 42, 1545-58.CrossRefGoogle Scholar
Marinelli, G., and Mittempergher, M. (1966) Bull. Volcanol. 29, 113-40.CrossRefGoogle Scholar
Medaris, L. G. Jr., (1969) Am. J. Sci. 267, 945-68.CrossRefGoogle Scholar
Merrill, R. B., and Wyllie, P. J. (1973) Am. Mineral. 58, 16-20.Google Scholar
Modreski, P. J., and Boettcher, A. L. (1972) Am. J. Sci. 272, 852-69.CrossRefGoogle Scholar
Modreski, P. J., and Boettcher, A. L. (1973) Ibid. 273, 385-414.Google Scholar
Mori, T., and Green, D. H. (1978) J. Geol. 86, 83-97.CrossRefGoogle Scholar
Mysen, B. O., and Boettcher, A. L. (1975) J. Petrol. 16, 549-93.CrossRefGoogle Scholar
Mysen, B. O. and Kushiro, I. (1977) Am. Mineral, 62, 843-65.Google Scholar
Nicholls, I. A., and Ringwood, A. E. (1973) J. Geol. 81, 285-300.CrossRefGoogle Scholar
O'Hara, M. J. (1968) Earth Sci. Rev. 4, 69-133.CrossRefGoogle Scholar
O'Hara, M. J. and Yoder, H. S. Jr., (1967) Scott. J. Geol. 3, 67-117.CrossRefGoogle Scholar
O'Hara, M. J., Saunders, M. J., and Mercy, E. L. P. (1975) Phys. Chem. Earth, 9, 571-604.CrossRefGoogle Scholar
Powell, J. L., and Bell, K. (1974) In The Alkaline Rocks (Sorensen, H., ed.), London, Wiley, 412-21.Google Scholar
Prider, R. T. (1960) J. Geol. Soc. Austral. 6, 71-118.CrossRefGoogle Scholar
Ringwood, A. E. (1975) Composition and Petrology of the Earth's Mantle. New York, McGraw-Hill.Google Scholar
Rittmann, A. (1933) Z. Vulkan. 15, 8-94.Google Scholar
Ryabchikov, I. D., and Green, D. H. (1978) In Problems of Petrology of the Earth's Crust and Upper Mantle, 403, Nauka, Novosibirsk. Tr. Inst. Geol. Geofiz. Akad.Google Scholar
Sahama, Th. G. (1974) In The Alkaline Rocks (Sorensen, H., ed.), London, Wiley, 96-109.Google Scholar
Stern, C. R., and Wyllie, P. J. (1975) Am. Mineral. 60, 681-9.Google Scholar
Thompson, R. N. (1974a) Mineral. Mag. 39, 768-87.CrossRefGoogle Scholar
Thompson, R. N. (1974b) Contrib. Mineral. Petrol. 45, 317-41.CrossRefGoogle Scholar
Thompson, R. N. (1977) Ibid. 60, 91-108.Google Scholar
Turi, B., and Taylor, H. P. Jr., (1976) Ibid. 55, 1-31.Google Scholar
Wade, A., and Prider, R. T. (1940) Q. J. Geol. Soc. London, 96, 3998.CrossRefGoogle Scholar
Wendlandt, R. F. (1977) Carnegie Inst. Washington Yearb. 76, 435-41.Google Scholar
Wendlandt, R. F. and Mysen, B. O. (1978) Ibid. 77, 756-61.Google Scholar
Wyllie, P. J. (1974) In The Alkaline Rocks (Sorensen, H., ed.), London, Wiley, 459-74.Google Scholar
Yoder, H. S. Jr.,, and Kushiro, I. (1969) Am. J. Sci. 267-A, 558-82.Google Scholar