Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-24T15:14:27.600Z Has data issue: false hasContentIssue false

Uranium content, distribution, and migration in the Glendessarry syenite, Inverness-shire

Published online by Cambridge University Press:  05 July 2018

M. B. Fowler*
Affiliation:
Department of Geology, Imperial College, London SW7 2BP

Abstract

The distribution of uranium in a suite of variably deformed and metamorphosed rocks from the leucocratic member of the Glendessarry syenite has been determined using the fission track method. The uranium content of the magma increased during crystallization and uranium was concentrated in accessory minerals such as monazite, zircon, sphene, allanite, apatite, and microinclusions of a Zr- and Ti-rich phase. Contamination of the magma by pelitic metasediment enhanced the uranium content and monazite and zircon formed instead of sphene, allanite, and apatite.

Evidence of subsolidus uranium mobility in late stage magmatic or metamorphic fluids is presented here and shows: (a) Intracrystalline redistribution of uranium, especially in grains of sphene. (b) Intergranular mobility in a fluid phase, which affected the uraniferous accessory minerals in several ways.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bohsr, H., Rose-Hansen, J., Sorensen, H., Stcenfelt, A., Lovborg, L., and Kunzendorf, H. (1974). In Formation of uranium deposits, IAEA Vienna, 4960.Google Scholar
Bowie, S. H. U., Simpson, P. R., and Rice, C. M. (1973). In Geochemical exploration 1972, ed. Jones, M. J., pp. 359-72. London: Institution of Mining and Metallurgy.Google Scholar
Clark, G. J., Gulson, B. L., and Cookson, J. A. (1979). Geochim. Cosmochim. Acta, 43, 43-18.CrossRefGoogle Scholar
Collerson, K. D. and Fryer, B. J. (1978). Contrib. Mineral. Petrol. 67, 67-67.CrossRefGoogle Scholar
Fyfe, W. S. (1973). Phil. Trans. R. Soc. Lond. A273, 457-61.Google Scholar
Johnstone, G. S., Smith, D. I., and Harris, A. L. (1969). In Kay, M. (ed.). North Atlantic—Geology and Continental Drift, a symposium, Am. Assoc. Petrol. Geol. Mem. 12, 12-80.Google Scholar
Kostov, I. (1977). In Recognition and evaluation ofuraniferous areas. IAEA Vienna, 15-33.Google Scholar
Lambert, I. B. and Heier, K. S. (1967). Geochim. Cosmochim. Acta, 31, 31-90.CrossRefGoogle Scholar
Lambert, R. St. J., Poole, A. B., Richardson, S. W., Johnstone, G. S., and Smith, D. I. (1964). Nature, 202, 370-2.CrossRefGoogle Scholar
Plant, J. A., Brown, G. C., Simpson, P. R., and Smith, R. T. (1980). Trans. Inst. Mining Metall. B89, 198210.Google Scholar
Richardson, S. W. (1968). Q. J. Geol. Soc. 124, 9-51.CrossRefGoogle Scholar
Rogers, J. J. W. and Adams, J. A. S. (1969). In Wedepohl, K. H. (ed.), Handbook of oeochemistry, 1117. Springer, Berlin.Google Scholar
Simpson, P. R., Brown, G. C., Plant, J. A., and Ostle, D. (1979). Phil. Trans. R. Soc. Lond. A291, 385-412.Google Scholar
Van Breeman, O., Aftalion, M., Pankhurst, R. J., and Richardson, S. W. (1979). Scott. J. Geol. 15, 15-62.Google Scholar