Skip to main content Accessibility help
×
×
Home

Uranium and technetium interactions with wüstite [Fe1–xO] and portlandite [Ca(OH)2] surfaces under geological disposal facility conditions

  • A. Van Veelen (a1), O. Preedy (a2), J. Qi (a3), G. T. W. Law (a4), K. Morris (a5), J. F. W. Mosselmans (a6), M. P. Ryan (a3), N. D. M. Evans (a2) and R. A. Wogelius (a1)...

Abstract

Iron oxides resulting from the corrosion of large quantities of steel that are planned to be installed throughout a deep geological disposal facility (GDF) are expected to be one of the key surfaces of interest for controlling radionuclide behaviour under disposal conditions. Over the lengthy timescales associated with a GDF, the system is expected to become anoxic so that reduced Fe(II) phases will dominate. Batch experiments have therefore been completed in order to investigate how a model reduced Fe-oxide surface (wüstite, Fe1–xO) alters as a function of exposure to aqueous solutions with compositions representative of conditions expected within a GDF. Additional experiments were performed to constrain the effect that highly alkaline solutions (up to pH 13) have on the adsorption behaviour of the uranyl (UO2 2+) ion onto the surfaces of both wüstite and portlandite [Ca(OH)2; representative of the expected cementitious phases]. Surface co-ordination chemistry and speciation were determined by ex situ X-ray absorption spectroscopy measurements (both X-ray absorption near-edge structure analysis (XANES) and extended X-ray absorption fine structure analysis (EXAFS)). Diffraction, elemental analysis and XANES showed that the bulk solid composition and Fe oxidation state remained relatively unaltered over the time frame of these experiments (120 h), although under alkaline conditions possible surface hydroxylation is observed, due presumably to the formation of surface hydroxyl complexes. The surface morphology, however, is altered significantly with a large degree of roughening and an observed decrease in the average particle size. Reduction of U(VI) to U(IV) occurs during adsorption in almost all cases and this is interpreted to indicate that wüstite may be an effective reductant of U during surface adsorption. This work also shows that increasing the carbonate concentration in reactant solutions dramatically decreases the adsorption coefficients for U on both wüstite and portlandite, consistent with U speciation and surface reactivity determined in other studies. Finally, the EXAFS results include new details about exactly how U bonds to this metal oxide surface.

Copyright

Corresponding author

References

Hide All
Bargar, J.R., Reitmeyer, R. and Davis, J.A., (1999) Spectroscopic confirmation of uranium(VI)-carbonato adsorption complexes on hematite. Environmental Science & Technology, 33, 2481–2484.
Bargar, J.R., Reitmeyer, R., Lenhart, J.J., and Davis, J.A., (2000) Characterization of U(VI)-carbonato ternary complexes on hematite: EXAFS and electrophoretic mobility measurements. Geochimica e t Cosmochimica Acta, 64, 2737–2749.
Bondietti, E.A., and Francis, C.W., (1979) Geologic migration potentials of technetium-99 and neptunium- 237. Science, 203, 1337–1340.
Boyanov, M.I., O’Loughlin, E.J., Roden, E.E., Fein, J.B., and Kemner, K.M., (2007) Adsorption of Fe(II) and U(VI) to carboxyl-functionalized microspheres: The influence of speciation on uranyl reduction studied by t itration and XAFS. Geochimica et Cosmochimica Acta, 71, 1898–1912.
Braithwaite, J.W., and Molecke, M.A., (1980) Nuclear waste canister corrosion studies pertinent to geologic isolation. Nuclear and Chemical Waste Management, 1, 37–50.
Brunauer, S., Emmett, P.H., and Teller, E. (1938) Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60, 309–319.
Burke, I.T., Boothman, C., Lloyd, J.R., Mortimer, R.J.G., Livens, F.R., and Morris, K. (2005) Effects of progressive anoxia on the solubility of technetium in sediments. Environmental Science & Technology, 39, 4109–4116.
Cui, D. and Eriksen, T.E., (1996a) Reduction of pertechnetate by ferrous iron in solution: Influence of sorbed and precipitated Fe(II). Environmental Science & Technology, 30, 2259–2262.
Cui, D. and Eriksen, T.E., (1996b) Reduction of pertechnetate in solution by heterogeneous electron transfer from Fe(II)-containing geological material. Environmental Science & Technology, 30, 2263–2269.
Denecke, M.A., Rothe, J., Dardenne, K. and Lindqvist- Reis, P. (2003) Grazing incidence (GI) XAFS measurements of Hf(IV) and U(VI) sorption onto mineral surfaces. Physical Chemistry Chemical Physics, 5, 939–946.
Dent, A.J., Cibin, G., Ramos, S., Smith, A.D., Scott, S.M., Varandas, L., Pearson, M.R., Krumpa, N.A., Jones, C.P., and Robbins, P.E., (2009) B18: A core XAS spectroscopy beamline for diamond. Journal of Physics: Conference Series, 190, 012039.
Department for Environment, Food and Rural Affairs [Defra] and the Nuclear Decommisioning Authority [NDA] (2008) Radioactive wastes in the UK: A summary of the 2007 inventory. Report Nos. Defra/ RAS/08.001 and NDA/RWMD/003. NDA, Cumbria, UK.
Department for Environment, Food and Rural Affairs [Defra], Department for Business, Enterprise and Regulatory Reform [BERR] and the Devolved Administration for Wales and Northern Ireland (2008) Managing radioactive waste safely – a framework for implementing geological disposal. Defra, London, UK, 100 pp.
Fan, D., Anitori, R.P., Tebo, B.M., Tratnyek, P.G., Lezama Pacheco, J.S., Kukkadapu, R.K., Engelhard, M.H., Bowden, M.E., Kovarik, L. and Arey, B.W., (2013) Reductive sequestration of pertechnetate (99TcO4 –) by nano zerovalent iron (NZVI) transformed by abiotic sulfide. Environmental Science & Technology, 47, 5302–5310.
Farquhar, M.L., Wogelius, R.A., Charnock, J.M., Wincott, P., Tang, C.C., Newville, M., Eng, P.J., and Trainor, T.P., (2003) Surface oxidation of rhodonite: Structural and chemical study by surface scattering and glancing incidence XAS techniques. Mineralogical Magazine, 67, 1205–1219.
Feiveson, H., Mian, Z., Ramana, M.V., and von Hippel, F. (2011) Managing nuclear spent fuel: Policy lessons from a 10-country study available at http:// thebulletin.org/managing-nuclear-spent-fuel-policylessons- 10-country-study. Accessed on 24 November 2013.
Féron, D., Crusset, D. and Gras, J.-M. (2008) Corrosion issues in nuclear waste disposal. Journal of Nuclear Materials, 379, 16–23.
Greathouse, J.A., and Cygan, R.T., (2005) Molecular dynamics simulation of uranyl(VI) adsorption equilibria onto an external montmorillonite surface. Physical Chemistry Chemical Physics, 7, 3580–3586.
Grenthe, I., Fuger, J., Konings, R.J.M., Lemire, R.J., Muller, A.B., Nguyen-Trung, C., and Wanner, H. (2004) Chemical thermodynamics of uranium. Organisation for Economic Co-operation and Develpoment, Nuclear Energy Agency. Data Bank, Issy-les-Moulineaux, France.
Hastings, J.J., Rhodes, D., Fellerman, A.S., McKendrick, D. and Dixon, C. (2007) New approaches for sludge management in the nuclear industry. Powder Technology, 174, 18–24.
Hazan, E., Sadia, Y. and Gelbstein, Y. (2013) Characterization of AISI 4340 corrosion products using Raman spectroscopy. Corrosion Science, 74, 414–418.
Hess, N.J., Xia, Y., Rai, D. and Conradson, S.D., (2004) Thermodynamic model for the solubility of TcO2· xH2O(am) in the aqueous Tc(IV) – Na+ – Cl – H+ – OH – H2O system. Journal of Solution Chemistry, 33, 199–226.
Hiemstra, T., Venema, P. and van Riemsdijk, W.H., (1996) Intrinsic proton affinity of reactive surface groups of metal (hydr)oxides: The bond valence principle. Journal of Colloid and Interface Science, 184, 680–692.
Hiemstra, T., Riemsdijk, W.H.V., Rossberg, A. and Ulrich, K.-U. (2009) A surface structural model for ferrihydrite II: Adsorption of uranyl and carbonate. Geochimica et Cosmochimica Acta, 73, 4437–4451.
Hudson, E.A., Terminello, L.J., Viani, B.E., Denecke, M., Reich, T., Allen, P.G., Bucher, J.J., Shuh, D.K., and Edelstein, N.M., (1999) The structure of U6+ sorption complexes on vermiculite and hydrobiotite. Clays and Clay Minerals, 47, 439–457.
Ilton, E.S., Pacheco, J.S.L., Bargar, J.R., Shi, Z., Liu, J., Kovarik, L., Engelhard, M.H., and Felmy, A.R., (2012) Reduction of U(VI) incorporated in the structure of hematite. Environmental Science & Technology, 46, 9428–9436.
Istok, J.D., Senko, J.M., Krumholz, L.R., Watson, D., Bogle, M.A., Peacock, A., Chang, Y.J., and White, D.C., (2004) In situ bioreduction of technetium and uranium in a nitrate-contaminated aquifer. Environmental Science & Technology, 38, 468–475.
Kelly, S.D., (2010) Uranium chemistry in soils and sediments. Pp. 411–466 in: Developments in soil science, Vol. 34 (S. Balwant and G. Markus, editors). Elsevier, Amsterdam.
Kelly, S.D., Newville, M.G., Cheng, L., Kemner, K.M., Sutton, S.R., Fenter, P., Sturchio, N.C., and Spötl, C. (2003) Uranyl incorporation in natural calcite. Environmental Science & Technology, 37, 1284–1287.
Kelly, S.D., Rasbury, E.T., Chattopadhyay, S., Kropf, A.J., and Kemner, K.M., (2006) Evidence of a stable uranyl site in ancient organic-rich calcite. Environmental Science & Technology, 40, 2262–2268.
Langmuir, D. (1978) Uranium solution-mineral equilibria at low-temperatures with applications to sedimentory ore-deposits. Geochimica et Cosmochimica Acta, 42, 547–569.
Latta, D.E., Gorski, C.A., Boyanov, M.I., O’Loughlin, E.J., Kemner, K.M., and Scherer, M.M., (2011) Influence of magnetite stoichiometry on U(VI) reduction. Environmental Science & Technology, 46, 778–786.
Latta, D.E., Boyanov, M.I., Kemner, K.M., O’Loughlin, E.J., and Scherer, M.M., (2012) Abiotic reduction of uranium by Fe(II) in soil. Applied Geochemistry, 27, 1512–1524.
Lear, G., McBeth, J.M., Boothman, C., Gunning, D.J., Ellis, B.L., Lawson, R.S., Morris, K., Burke, I.T., Bryan, N.D., Brown, A.P., Livens, F.R., and Lloyd, J.R., (2009) Probing the biogeochemical behavior of technetium using a novel nuclear imaging approach. Environmental Science & Technology, 44, 156–162.
Liu, J., Pearce, C.I., Qafoku, O., Arenholz, E., Heald, S.M., and Rosso, K.M., (2012) Tc(VII) reduction kinetics by titanomagnetite (Fe3–xTixO4) nanoparticles. Geochimica et Cosmochimica Acta, 92, 67–81.
Lloyd, J.R., Sole, V.A., Van Praagh, C.V.G. and Lovley, D.R., (2000) Direct and Fe(II)-mediated reduction of technetium by Fe(III)-reducing bacteria. Applied and Environmental Microbiology, 66, 3743–3749.
Ma, M., Zhang, Y., Guo, Z. and Gu, N. (2013) Facile synthesis of ultrathin magnetic iron oxide nanoplates by schikorr reaction. Nanoscale Research Letters, DOI: 10.1186/1556-276X-8-16.
Macé, N., Wieland, E., Dähn, R., Tits, J. and Scheinost Andreas, C. (2013) EXAFS investigation on U(VI) immobilization in hardened cement paste: Influence of experimental conditions on speciation. Radiochimica Acta International Journal for Chemical Aspects of Nuclear Science and Technology, 101, 379–389.
Marshall, T.A., Morris, K., Law, G.T.W., Livens, F.R., Mosselmans, J.F.W., Bots, P. and Shaw, S. (2014) Incorporation of uranium into hematite during crystallization from ferrihydrite. Environmental Science & Technology, 48, 3724–3731.
McKenzie, H.M., Coughlin, D., Laws, F. and Stamper, A. (2011) Groundwater Annual Report 2011. Sellafield Ltd, Cumbria, UK.
Morris, K., Livens, F.R., Charnock, J.M., Burke, I.T., McBeth, J.M., Begg, J.D.C., Boothman, C. and Lloyd, J.R., (2008) An X-ray absorption study of the fate of technetium in reduced and reoxidised sediments and mineral phases. Applied Geochemistry, 23, 603–617.
Morris, K., Law, G.T.W. and Bryan, N.D., (2011) Geodisposal of higher activity wastes. Pp. 129–151 in: Nuclear Power and the Environment (R.M. Harrison and R.E. Hester, editors). Issues in Environmental Science and Technology, 32. Royal Society of Chemistry, Cambridge, UK.
Newville, M., Ravel, B., Haskel, D., Rehr, J.J., Stern, E.A., and Yacoby, Y. (1995) Analysis of multiplescattering XAFS data using theoretical standards. Physica B: Condensed Matter, 208–209, 154–156.
Nuclear Decommisioning Authority [NDA] (2010a) Geological Disposal: Generic Operational Safety Case main report [Report no. NDA/RWMD/020]. NDA, Didcot, UK.
Nuclear Decommisioning Authority [NDA] (2010b) Geological Disposal: Steps towards implementation. Executive Summary. NDA, Didcot, UK.
Nuclear Decommisioning Authority [NDA] (2011) The 2010 UK Radioactive Waste Inventory: Main Report. Report Nos. URN 10D/985 and NDA/ST/ STY(11)0004. NDA, Cumbria, UK.
O’Loughlin, E.J., Kelly, S.D., and Kemner, K.M., (2010) XAFS investigation of the interactions of U(VI) with secondary mineralization products from the bioreduction of Fe(III) oxides. Environmental Science & Technology, 44, 1656–1661.
Ohnuki, T., Yoshida, T., Ozaki, T., Samadfam, M., Kozai, N., Yubuta, K., Mitsugashira, T., Kasama, T. and Francis, A.J., (2005) Interactions of uranium with bacteria and kaolinite clay. Chemical Geology, 220, 237–243.
Peretyazhko, T., Zachara, J.M., Heald, S.M., Kukkadapu, R.K., Liu, C., Plymale, A.E., and Resch, C.T., (2008) Reduction of Tc(VII) by Fe(II) sorbed on Al (hydr)oxides. Environmental Science & Technology, 42, 5499–5506.
Pointeau, I., Landesman, C., Giffaut, E. and Reiller, P. (2004) Reproducibility of the uptake of U(VI) onto degraded cement pastes and calcium silicate hydrate phases. Pp. 645. Radiochimica Acta International Journal for Chemical Aspects of Nuclear Science and Technology, 92, 645–650.
Quintessa, (2009) Corrosion resistance of austenitic and duplex stainless steels in environments related to UK geological disposal. A report to NDA RWMD. Report No. QRS-1384C-R1. Quintessa Ltd, Henley-on-Thames, UK.
Randall, J.J., and Ward, R. (1959) The preparation of some ternary oxides of the platinum metals. Journal of the American Chemical Society, 81, 2629–2631.
Reeder, R.J., Nugent, M., Lamble, G.M., Tait, C.D., and Morris, D.E., (2000) Uranyl incorporation into calcite and aragonite: XAFS and luminescence studies. Environmental Science & Technology, 34, 638–644.
Reeder, R.J., Nugent, M., Tait, C.D., Morris, D.E., Heald, S.M., Beck, K.M., Hess, W.P., and Lanzirotti, A. (2001) Coprecipitation of uranium(VI) with calcite: XAFS, micro-XAS, and luminescence characterization. Geochimica et Cosmochimica Acta, 65, 3491–3503.
Russell, A.D., Emerson, S., Nelson, B.K., Erez, J. and Lea, D.W., (1994) Uranium in foraminiferal calcite as a recorder of seawater uranium concentrations. Geochimica et Cosmochimica Acta, 58, 671–681.
Scott, T.B., Allen, G.C., Heard, P.J., and Randell, M.G., (2005) Reduction of U(VI) to U(IV) on the surface of magnetite. Geochimica et Cosmochimica Acta, 69, 5639–5646.
Singer, D.M., Chatman, S.M., Ilton, E.S., Rosso, K.M., Banfield, J.F., and Waychunas, G.A., (2012a) Identification of simultaneous U(VI) sorption complexes and U(IV) nanoprecipitates on the magnetite (111) surface. Environmental Science & Technology, 46, 3811–3820.
Singer, D.M., Chatman, S.M., Ilton, E.S., Rosso, K.M., Banfield, J.F., and Waychunas, G.A. (2012b) U(VI) sorption and reduction kinetics on the magnetite (111) surface. Environmental Science & Technology, 46, 3821–3830.
Smart, N.R., Blackwood, D.J., and Werme, L. (2002) Anaerobic corrosion of carbon steel and cast iron in artificial groundwaters: Part 1 Electrochemical aspects. Corrosion, 58, 627–637.
Thorpe, C.L., Boothman, C., Lloyd, J.R., Law, G.T.W., Bryan, N.D., Atherton, N., Livens, F.R., and Morris, K. (2014) The interactions of strontium and technetium with Fe(II) bearing biominerals: Implications for bioremediation of radioactively contaminated land. Applied Geochemistry, 40, 135–143.
Tits, J., Geipel, G., Macé, N., Eilzer, M. and Wieland, E. (2011) Determination of uranium(VI) sorbed species in calcium silicate hydrate phases: A laser-induced luminescence spectroscopy and batch sorption study. Journal of Colloid and Interface Science, 359, 248–256.
Topping, S. and Bruce, S. (2006) A ponderous hazard. Nuclear Engineering International, 51, 28–32
van Veelen, A., Copping, R., Law, G.T.W., Smith, A.J., Bargar, J.R., Rogers, J., Shuh, D.K., and Wogelius, R.A., (2012) Uranium uptake onto magnox sludge minerals studied using EXAFS. Mineralogical Magazine, 76, 3095–3104.
Vandergraaf, T.T., Ticknor, K.V., and George, I.M., (1984) Reactions between technetium in solution and iron-containing minerals under oxic and anoxic conditions. Pp. 25–43 in: Geochemical Behavior of Disposed Radioactive Waste (G.S. Barney, J.D., Navratil and W.W. Schulz, editors), ACS Symposium series. American Chemical Society, Washington DC.
Wander, M.C.F., Rosso, K.M., and Schoonen, M.A.A. (2007) Structure and charge hopping dynamics in green rust. The Journal of Physical Chemistry C, 111, 11414–11423.
Wazne, M., Korfiatis, G.P., and Meng, X. (2003) Carbonate effects on hexavalent uranium adsorption by iron oxyhydroxide. Environmental Science & Technology, 37, 3619–3624.
Yan-tao, L., and Bao-rong, H., (1998) Study on rust layers on steel in different marine corrosion zone. Chinese Journal of Oceanology and Limnology, 16, 231–236.
Zhang, Q., Wang, P. and Zhang, D. (2012) Stainless steel electrochemical corrosion behaviors induced by sulphate-reducing bacteria in different aerated conditions. International Journalo f Electrochemical Science, 7, 11528–11539.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mineralogical Magazine
  • ISSN: 0026-461X
  • EISSN: 1471-8022
  • URL: /core/journals/mineralogical-magazine
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
WORD
Supplementary materials

Van Veelen et al. supplementary material
Supplemental File

 Word (617 KB)
617 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed