Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-27T04:13:32.856Z Has data issue: false hasContentIssue false

Tl-bearing sulfosalt from the Lengenbach quarry, Binn Valley, Switzerland: Philrothite, TlAs3S5

Published online by Cambridge University Press:  05 July 2018

L. Bindi*
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Via G. La Pira 4, I-50121 Florence, Italy CNR – Istituto di Geoscienze e Georisorse, Sezione di Firenze, Via G. La Pira 4, I-50121 Florence, Italy
F. Nestola
Affiliation:
Dipartimento di Geoscienze, Università di Padova, Via Gradenigo 6, I-35131, Padua, Italy
E. Makovicky
Affiliation:
Department of Geoscience and Resource Management, University of Copenhagen, Østervoldgade 10, 1350 Copenhagen, Denmark
A. Guastoni
Affiliation:
Museo di Mineralogia, Università di Padova, Via Giotto 1, I-35122, Padua, Italy
L. De Battisti
Affiliation:
FGL (Forschungsgemeinschaft Lengenbach), Via dello Storno 18, I-20147 Milan, Italy

Abstract

Philrothite, ideally TlAs3S5, is a new mineral from the Lengenbach quarry in the Binn Valley, Valais, Switzerland. It occurs as very rare crystals up to 200 mm across on realgar associated with smithite, rutile and sartorite. Philrothite is opaque with a metallic lustre and shows a dark brown streak. It is brittle; the Vickers hardness (VHN25) is 128 kg/mm2 (range: 120–137) (Mohs hardness of 3–3½). In reflected light philrothite is moderately bireflectant and weakly pleochroic from dark grey to light grey. Under crossed polars it is anisotropic with grey to bluish rotation tints. Internal reflections are absent. Reflectance percentages for the four COM wavelengths (Rmin and Rmax) are: 26.5, 28.8 (471.1 nm), 25.4, 27.2 (548.3 nm), 24.6, 26.3 (586.6 nm) and 24.0, 25.1 (652.3 nm), respectively.

Philrothite is monoclinic, space group P21/c, with a = 8.013(2), b = 24.829(4), c = 11.762(3) Å, β = 132.84(2)°, V = 1715.9(7) Å3, Z = 8. It represents the N = 4 homologue of the sartorite homologous series. In the crystal structure [R1 = 0.098 for 1217 reflections with I > 2σ(I)], Tl assumes tricapped prismatic sites alternating to form columns perpendicular to the b axis. Between the zigzag walls of Tl coordination prisms, coordination pyramids of As(Sb) form diagonally-oriented double layers separated by broader interspaces which house the lone electron pairs of these elements.

The eight strongest calculated powder-diffraction lines [d in Å(I/I0) (hkl)] are: 12.4145 (52) (020); 3.6768 (100) (61); 3.4535 (45) (131); 3.0150 (46) (53); 2.8941 (52) (81); 2.7685 (76) (230); 2.7642 (77) (34); 2.3239 (52) (092). A mean of five electron microprobe analyses gave Tl 26.28(12), Pb 6.69(8), Ag 2.50(4), Cu 0.04(2), Hg 0.07(2), As 32.50(13), Sb 3.15(3), S 26.35(10), total 97.58 wt.%, corresponding, on the basis of a total of nine atoms, to (Tl0.789Pb0.198)∑=0.987 (As2.662Sb0.159Ag0.142Cu0.004Hg0.002)∑=2.969S5.044. The new mineral has been approved by the Commission on New Minerals, Nomenclature and Classification (CNMNC) of the International Mineralogical Association (2013-066) and named for Philippe Roth (b. 1963), geophysicist and well known mineral expert on the Lengenbach minerals for more than 25 years.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balić-Žunić, T., Makovicky, E., Karanović, L., Poleti, D. and Graeser, S. (2006) The crystal structure of gabrielite, Tl2AgCu2As3S7, a new species of thallium sulfosalt from Lengenbach, Switzerland. The Canadian Mineralogist, 44, 141158.Google Scholar
Berlepsch, P., Armbruster, T. and Topa, D. (2002) Structural and chemical variations in rathite, Pb8Pb4−x(Tl2As2)x(Ag2As2)As16S40: modulations of a parent structure. Zeitschrift für Kristallographie, 217, 581590.Google Scholar
Berlepsch, P., Armbruster, T., Makovicky, E. and Topa, D. (2003) Another step toward understanding the true nature of sartorite: Determination and refinement of a ninefold superstructure. American Mineralogist, 88, 450461.CrossRefGoogle Scholar
Bindi, L., Nestola, F., Guastoni, A. and Secco, L. (2010) The crystal structure of dalnegroite, Tls−xPb2x (As,Sb)21−xS34: A masterpiece of structural complexity. Mineralogical Magazine, 74, 9991012.CrossRefGoogle Scholar
Bindi, L., Nestola, F., Guastoni, A., Peruzzo, L., Ecker, M. and Carampin, R. (2012) Raberite, Tl5Ag4As6SbS15, a new Tl-bearing sulfosalt from Lengenbach quarry, Binn Valley, Switzerland: description and crystal structure. Mineralogical Magazine, 76, 11531163.CrossRefGoogle Scholar
Engel, P., Gostojic, M. and Nowacki, W. (1983) The crystal structure of pierrotite, Tl2(Sb,As)10S16 . Zeitschrift für Kristallographie, 165, 209215.CrossRefGoogle Scholar
Gostojic, M., Nowacki, W. and Engel, P. (1982) The crystal structure of synthetic TlSb3S5 Zeitschrift für Kristallographie, 159, 217224.Google Scholar
Graeser, S., Berlepsch, P., Makovicky, E. and Balić-Žunić, T. (2001) Sicherite, TlAg2(As,Sb)3S6, a new sulfosalt mineral from Lengenbach (Binntal, Switzerland): Description and structure determination. American Mineralogist, 86, 10871093.CrossRefGoogle Scholar
Graeser, S., Cannon, R., Drechsler, E., Raber, T. and Roth, P. (2008) Faszination Lengenbach Abbau- Forschung-Mineralien 1958–2008. Kristallographik Verlag, Achberg.Google Scholar
Hofmann, B.A. and Knill, M.D. (1996) Geochemistry and genesis of the Lengenbach Pb-Zn-As-Tl-Ba mineralization, Binn Valley, Switzerland. Mineralium Deposita, 31, 319339.CrossRefGoogle Scholar
Ibers, J.A. and Hamilton, W.C. Eds. (1974) International Tables for X-ray Crystallography, vol. IV, 366p. Kynock, Dordrecht, The Netherlands.Google Scholar
Makovicky, E. (1985) The building principles and classification of sulphosalts based on the SnS archetype. Fortschritte der Mineralogie, 63, 4589.Google Scholar
Makovicky, E. and Balić-Žunić, T. (1993) Contributions to the crystal chemistry of thallium sulphosalts II. TlSb3S5 – the missing link of the lillianite homologous series. Neues Jahrbuch für Mineralogie, Abhandlungen, 165, 331344.Google Scholar
Moëlo, Y., Makovicky, E., Mozgova, N.N., Jambor, J.L., Cook, N., Pring, A., Paar, W., Nickel, E.H., Graeser, S., Karup–Møller, S., Balić-Žunić, T., Mumme, W.G., Vurro, F., Topa, D., Bindi, L., Bente, K. and Shimizu, M. (2008) Commission on Ore Mineralogy of the International Mineralogical Association: Report of the Sulfosalt Subcommittee. European Journal of Mineralogy, 20, 746.CrossRefGoogle Scholar
Nestola, F., Guastoni, A., Bindi, L. and Secco, L. (2010) Dalnegroite, Tl5−xPb2x(As,Sb)21−xS34, a new thallium sulphosalt from Lengenbach quarry, Binntal, Canton Valais, Switzerland. Mineralogical Magazine, 73, 10271032.CrossRefGoogle Scholar
Roth, P. (2007) Minerals first discovered in Switzerland and minerals named after Swiss individuals. Kristallografik Verlag, Achberg, Germany, pp 240.Google Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751767.CrossRefGoogle Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Supplementary material: File

Bindi et al. supplementary material

Structure factor data

Download Bindi et al. supplementary material(File)
File 61.6 KB