Skip to main content Accessibility help

Time's arrow, time's cycle: Granulite metamorphism and geodynamics

  • Michael Brown (a1) and Tim Johnson (a2)


Although the thermal evolution of the mantle before c. 3.0 Ga remains unclear, since c. 3.0 Ga secular cooling has dominated over heat production—this is time's arrow. By contrast, the thermal history of the crust, which is preserved in the record of metamorphism, is more complex. Heat to drive metamorphism is generated by radioactive decay and viscous dissipation, and is augmented by the influx of heat from the mantle. Notwithstanding that reliable data are sparse before the Neoarchean, we use a dataset of temperature (T), pressure (P) and thermobaric ratio (T/P at the metamorphic ‘peak’), and age of metamorphism (t, the timing of the metamorphic ‘peak’) for rocks from 564 localities ranging in age from the Cenozoic to the Eoarchean eras to interrogate the crustal record of metamorphism as a proxy for the heat budget of the crust through time. On the basis of T/P, metamorphic rocks are classified into three natural groups: high T/P type (T/P >775°C/GPa, mean T/P ~1105°C/GPa), including common and ultrahigh-temperature granulites, intermediate T/P type (T/P between 775 and 375°C/GPa, mean T/P ~575°C/GPa), including high-pressure granulites and medium- and high-temperature eclogites, and low T/P type (T/P <375°C/GPa, mean T/P ~255°C/GPa), including blueschists, low-temperature eclogites and ultrahigh-pressure metamorphic rocks. A monotonic increase in the P of intermediate T/P metamorphism from the Neoarchean to the Neoproterozoic reflects strengthening of the lithosphere during secular cooling of the mantle—this is also time's arrow. However, temporal variation in the P of intermediate T/P metamorphism and in the moving means of T and T/P of high T/P metamorphism, combined with the clustered age distribution, demonstrate the cyclicity of collisional orogenesis and cyclic variations in the heat budget of the crust superimposed on secular cooling since c. 3.0 Ga—this is time's cycle. A first cycle began with the widespread appearance/survival of intermediate T/P and high T/P metamorphism in the Neoarchean rock record coeval with amalgamation of dispersed blocks of lithosphere to form protocontinents. This cycle was terminated by the fragmentation of the protocontinents into cratons in the early Paleoproterozoic, which signalled the start of a new cycle. The second cycle continued with the progressive amalgamation of the cratons into the supercontinent Columbia and extended until the breakup of the supercontinent Rodinia in the Neoproterozoic. This cycle represented a period of relative tectonic and environmental stability, and perhaps reduced subduction during at least part of the cycle. During most of the Proterozoic the moving means for both T and T/P of high T/P metamorphism exceeded the arithmetic means, reflecting insulation of the mantle beneath the quasi-integrated lithosphere of Columbia and, after a limited reorganisation, Rodinia. The third cycle began with the steep decline in thermobaric ratios of high T/P metamorphism to their lowest value, synchronous with the breakup of Rodinia and the formation of Pannotia, and the widespread appearance/preservation of low T/P metamorphism in the rock record. The thermobaric ratios for high T/P metamorphism rise to another peak associated with the Pan-African event, again reflecting insulation of the mantle. The subsequent steep decline in thermobaric ratios of high T/P metamorphism associated with the breakup of Pangea at c. 0.175 Ga may indicate the start of a fourth cycle. The limited occurrence of high and intermediate T/P metamorphism before the Neoarchean suggests either that suitable tectonic environments to generate these types of metamorphism were not widely available before then or that the rate of survival was low. We interpret the first cycle to record stabilisation of subduction and the emergence of a network of plate boundaries in a plate tectonics regime once the balance between heat production and heat loss changed in favour of secular cooling, possibly as early as c. 3.0 Ga in some areas. This is inferred to have been a globally linked system by the early Paleoproterozoic, but whether it remained continuous to the present is unclear. The second cycle was characterised by stability from the formation of Columbia to the breakup of Rodinia, generating higher than average T and T/P of high T/P metamorphism. The third cycle reflects colder collisional orogenesis and deep subduction of the continental crust, features that are characteristic of modern plate tectonics, which became possible once the average temperature of the asthenospheric mantle had declined to <100°C warmer than the present day after c. 1.0 Ga.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Time's arrow, time's cycle: Granulite metamorphism and geodynamics
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Time's arrow, time's cycle: Granulite metamorphism and geodynamics
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Time's arrow, time's cycle: Granulite metamorphism and geodynamics
      Available formats


Corresponding author

*Author for correspondence: Michael Brown, Email:


Hide All

Associate Editor: Thomas Mueller



Hide All
Artemieva, I.M., Thybo, H., Jakobsen, K., Sørensen, N.K. and Nielsen, L.S.K. (2017) Heat production in granitic rocks: Global analysis based on a new data compilation GRANITE2017. Earth-Science Reviews, 172, 126.
Ashwal, L.D. (2010) The temporality of anorthosites. The Canadian Mineralogist, 48, 711728.
Ashwal, L.D. and Bybee, G.M. (2017) Crustal evolution and the temporality of anorthosites. Earth-Science Reviews, 173, 307330.
Baxter, E.F. and Scherer, E.E. (2013) Garnet geochronology: Timekeeper of tectonometamorphic processes. Elements, 9, 433438.
Bedard, J.H. (2003) Evidence of regional-scale, pluton-driven, high-grade metamorphism in the Archean Minto Block, Northern Superior Province, Canada. Journal of Geology, 111, 183205.
Bhowmik, S.K. and Chakraborty, S. (2017) Sequential kinetic modelling: A new tool decodes pulsed tectonic patterns in early hot orogens of Earth. Earth and Planetary Science Letters, 460, 171179.
Bleeker, W. (2003) The late Archean record: a puzzle in ca. 35 pieces. Lithos, 71, 99134.
Bradley, D.C. (2008) Passive margins through earth history. Earth-Science Reviews, 91, 126.
Brown, M. (1993) P-T-t evolution of orogenic belts and the causes of regional metamorphism. Journal of the Geological Society, London, 150, 227241.
Brown, M. (2001) From microscope to mountain belt: 150 years of petrology and its contribution to understanding geodynamics, particularly the tectonics of orogens. Journal of Geodynamics, 32, 115164.
Brown, M. (2006) Duality of thermal regimes is the distinctive characteristic of plate tectonics since the Neoarchean. Geology, 34, 961964.
Brown, M. (2007) Metamorphic conditions in orogenic belts: A record of secular change. International Geology Review, 49, 193234.
Brown, M. (2014) The contribution of metamorphic petrology to understanding lithosphere evolution and geodynamics. Geoscience Frontiers, 5, 553569.
Brown, M. and Johnson, T. (2018) Invited Centennial Article: Secular change in metamorphism and the onset of global plate tectonics. American Mineralogist, 103, 181196.
Brown, M. and Johnson, T. (2019) Global age, temperature and pressure data for secular change in metamorphism,
Bybee, G.M., Ashwal, L.D., Shirey, S.B. and Horan, M. (2014 a) Pyroxene megacrysts in Proterozoic anorthosites: implications for tectonic setting, magma source and magmatic processes at the Moho. Earth and Planetary Science Letters, 389, 7485.
Bybee, G.M., Ashwal, L.D., Shirey, S.B., Horan, M., Mock, T. and Andersen, T.B. (2014 b) Debating the petrogenesis of Proterozoic anorthosites – Reply to comments by Vander Auwera et al. on “Pyroxene megacrysts in Proterozoic anorthosites: Implications for tectonic setting, magma source and magmatic processes at the Moho”. Earth and Planetary Science Letters, 401, 381383.
Cagnard, F., Gapais, D. and Barbey, P. (2007) Collision tectonics involving juvenile crust: the example of the southern Finnish Svecofennides. Precambrian Research, 154, 125141.
Cawood, P.A. and Hawkesworth, C.J. (2014) Earth's middle age. Geology, 42, 503506.
Chardon, D., Gapais, D. and Cagnard, F. (2009) Flow of ultra-hot orogens: a view from the Precambrian, clues for the Phanerozoic. Tectonophysics, 477, 105118.
Charlier, B., Duchesne, J.C., Vander Auwera, J., Storme, J.-Y., Maquil, R. and Longhi, J. (2010) Polybaric fractional crystallization of high-alumina basalt parental magmas in the Egersund-Ogna Massif-type Anorthosite (Rogaland, SW Norway) constrained by plagioclase and high-alumina orthopyroxene megacrysts. Journal of Petrology, 51, 25152546.
Chopin, C. (2003) Ultrahigh-pressure metamorphism: tracing continental crust into the mantle: Earth and Planetary Science Letters, 212, 114.
Chowdhury, P., Gerya, T. and Chakraborty, S. (2017) Emergence of silicic continents as the lower crust peels off on a hot plate-tectonic Earth. Nature Geoscience, 10, 698703.
Clark, C., Fitzsimons, I.C.W., Healy, D. and Harley, S.L. (2011) How does the continental crust get really hot? Elements, 7, 235240.
Dewey, J.F., Robb, L. and Van Schalkwyk, L. (2006) Did Bushmanland extensionally unroof Namaqualand? Precambrian Research, 150, 173182.
Diener, J.F.A. (2014) Low-P–high-T metamorphism of the Aggeneys terrane, Namaqua metamorphic complex, South Africa. South African Journal of Geology, 117, 3144.
Diener, J.F.A., White, R.W., Link, K., Dreyer, T.S. and Moodley, A. (2013) Clockwise, low-P metamorphism of the Aus granulite terrain, southern Namibia, during the Mesoproterozoic Namaqua Orogeny. Precambrian Research, 224, 629652.
Dumond, G., Mahan, K.H., Williams, M.L. and Karlstrom, K.E. (2007) Crustal segmentation, composite looping pressure–temperature paths, and magma-enhanced metamorphic field gradients: Upper Granite Gorge, Grand Canyon, USA. Geological Society of America Bulletin, 119, 202220.
Engi, M., Lanari, P. and Kohn, M.J. (editors) (2017) Petrochronology: Methods and Applications. Reviews in Mineralogy and Geochemistry, 83. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.
England, P.C. (1987) Diffuse continental deformation – Length scales, rates and metamorphic evolution. Philosophical Transactions of the Royal Society A – Mathematical Physical and Engineering Sciences, 321, 322.
England, P.C. and Richardson, S.W. (1977) The influence of erosion upon the mineral facies of rocks from different metamorphic environments. Journal of the Geological Society, 134, 201213.
Gorczyk, W., Smithies, H., Korhonen, F., Howard, H. and Quentin de Gromard, R. (2015) Ultra-hot Mesoproterozoic evolution of intracontinental central Australia. Geoscience Frontiers, 6, 2337.
Gould, S.J. (1987) Time's Arrow, Time's Cycle: Myth and Metaphor in the Discovery of Geological Time. Harvard University Press, USA, 222 pp.
Harley, S.L. (1998). On the occurrence and characterization of ultrahigh temperature crustal metamorphism. Pp. 81107 in: What Drives Metamorphism and Metamorphic Relations? (Treloar, P.J. and O'Brien, P.J., editors). Geological Society, London, Special Publication, vol. 138.
Harley, S.L. (2016) A matter of time: the importance of the duration of UHT metamorphism. Journal of Mineralogical and Petrological Sciences, 111, 5072.
Hawkesworth, C.J., Cawood, P.A., Kemp, A., Storey, C. and Dhuime, B. (2009) A matter of preservation. Science, 323, 4950.
Herzberg, C., Asimow, P.D., Arndt, N., Niu, Y., Lesher, C.M., Fitton, J.G., Cheadle, M.J. and Saunders, A.D. (2007) Temperatures in ambient mantle and plumes: constraints from basalts, picrites and komatiites. Geochemistry, Geophysics, Geosystems, 8, Q02006.
Herzberg, C., Condie, K. and Korenaga, J. (2010) Thermal history of the Earth and its petrological expression. Earth and Planetary Science Letters, 292, 7988.
Holland, H.D. (2006) The oxygenation of the atmosphere and oceans. Philosophical Transactions of the Royal Society B, 361, 903915.
Jaupart, C. and Mareschal, J.-C. (2015) Post-orogenic thermal evolution of newborn Archean continents. Earth and Planetary Science Letters, 432, 3645.
Jaupart, C., Mareschal, J.-C. and Iarotsky, L. (2016). Radiogenic heat production in the continental crust. Lithos, 262, 398427.
Johnson, T.E., Brown, M., Kaus, B. and VanTongeren, J.A. (2014) Delamination and recycling of Archaean crust caused by gravitational instabilities. Nature Geoscience, 7, 4752.
Johnson, T.E., Kirkland, C.L., Gardiner, N.J., Brown, M., Smithies, R.H. and Santosh, M. (2019) Secular change in TTG compositions: Implications for the evolution of Archaean geodynamics. Earth and Planetary Science Letters, 505, 6575.
Karlstrom, K.E. and Williams, M.L. (2006) Nature of the middle crust–heterogeneity of structure and process due to pluton-enhanced tectonism: an example from Proterozoic rocks of the North American Southwest. Pp. 268295 in: Evolution and Differentiation of the Continental Crust (Brown, M. and Rushmer, T., editors). Cambridge University Press, Cambridge, UK.
Kelsey, D.E. and Hand, M. (2015) On ultrahigh temperature crustal metamorphism: Phase equilibria, trace element thermometry, bulk composition, heat sources, timescales and tectonic settings. Geoscience Frontiers, 6, 311356.
Korenaga, J. (2013) Initiation and Evolution of Plate Tectonics on Earth: Theories and Observations. Annual Review of Earth and Planetary Sciences, 41, 117151.
Korenaga, J. (2017) Pitfalls in modeling mantle convection with internal heat production. Journal of Geophysical Research Solid Earth, 122, 40644085.
Korhonen, F.J., Brown, M., Clark, C. and Bhattacharya, S. (2013) Osumilite–melt interactions in ultrahigh temperature granulites: phase equilibria modelling and implications for the P–T–t evolution of the Eastern Ghats Province, India. Journal of Metamorphic Geology, 31, 881907.
Korhonen, F.J., Clark, C., Brown, M. and Taylor, R. (2014) Taking the temperature of Earth's hottest crust. Earth and Planetary Science Letters, 408, 341354.
Korja, A., Lahtinen, R. and Nironen, M. (2006) The Svecofennian orogen: a collage of microcontinents and island arcs. Pp. 561578 in: European Lithosphere Dynamics (Gee, D.G. and Stephenson, R.A., editors). Geological Society, London, Memoirs, 32.
Kukkonen, I.T. and Lauri, L.S. (2009) Modelling the thermal evolution of a collisional Precambrian orogen: high heat production migmatitic granites of southern Finland. Precambrian Research, 168, 233246.
Kylander-Clark, A.R.C., Hacker, B.R. and Mattinson, C.G. (2012) Size and exhumation rate of ultrahigh-pressure terranes linked to orogenic stage. Earth and Planetary Science Letters, 321–322, 115120.
Labrosse, S. and Jaupart, C. (2007) Thermal evolution of the Earth: secular changes and fluctuations of plate characteristics. Earth and Planetary Science Letters, 260, 465481.
Lenardic, A. (2017) Plate tectonics: A supercontinental boost. Nature Geoscience, 10, 45.
Mitchell, R.J. and Harley, S.L. (2017) Zr-in-rutile resetting in aluminosilicate bearing ultra-high temperature granulites: refining the record of cooling and hydration in the Napier Complex, Antarctica. Lithos, 272–273, 128146.
Mitchell, R.J., Johnson, T.E., Clark, C., Gupta, S., Brown, M., Harley, S.L. and Taylor, R. (2018) Neoproterozoic evolution and Cambrian reworking of ultrahigh temperature granulites in the Eastern Ghats Province, India. Journal of Metamorphic Geology,
Miyashiro, A. (1961) Evolution of metamorphic belts. Journal of Petrology, 2, 277311.
Mulder, J.A., Karlstrom, K.E., Halpin, J.A., Merdith, A.S., Spencer, C.J., Berry, R.F. and McDonald, B. (2018) Rodinian devil in disguise: Correlation of 1.25–1.10 Ga strata between Tasmania and Grand Canyon. Geology, 46, 991994.
Nance, R.D. and Murphy, J.B. (2019) Supercontinents and the case for Pannotia. Geological Society, London, Special Publications, 470,
Nicoli, G., Moyen, J.-F. and Stevens, G. (2016) Diversity of burial rates in convergent settings decreased as Earth aged. Scientific Reports, 6, 26359.
O'Brien, P.J. and Rötzler, J. (2003) High-pressure granulites: formation, recovery of peak conditions and implications for tectonics. Journal of Metamorphic Geology, 21, 320.
Pattison, D.R.M. (2003) Petrogenetic significance of orthopyroxene-free garnet + clinopyroxene + plagioclase ± quartz-bearing metabasites with respect to the amphibolite and granulite facies. Journal of Metamorphic Geology, 21, 2134.
Perchuk, A.L., Safonov, O.G., Smit, C.A., van Reenen, D.D., Zakharov, V.S. and Gerya, T.V. (2018) Precambrian ultra-hot orogenic factory: making and reworking of continental crust. Tectonophysics, 746, 572586.
Philpotts, A. and Ague, J. (2009) Principles of Igneous and Metamorphic Petrology (2nd Edition). Cambridge University Press, Cambridge, UK, 667 pp.
Pisarevsky, S.A., Elming, S.-A., Pesonen, L.J. and Li, Z.-X. (2014) Mesoproterozoic paleogeography: Supercontinent and beyond. Precambrian Research, 244, 207225.
Puetz, S.J., Ganade, C.E., Zimmermann, U. and Borchardt, G. (2018) Statistical analyses of Global U-Pb Database 2017. Geoscience Frontiers, 9, 121145.
Rey, P.F. and Coltice, N. (2008) Neoarchean lithospheric strengthening and the coupling of Earth's geochemical reservoirs. Geology, 36, 635638.
Richardson, S.W. and England, P.C. (1979) Metamorphic consequences of crustal eclogite production in overthrust orogenic zones. Earth and Planetary Science Letters, 42, 183190.
Rivers, T. (2015) Tectonic setting and evolution of the Grenville Orogen: An assessment of progress over the last 40 years. Geoscience Canada, 42, 77124.
Rivers, T., Culshaw, N., Hynes, A., Indares, A., Jamieson, R. and Martignole, J. (2012) The Grenville Orogen – A post-LITHOPROBE perspective. Pp. 97236 in: Tectonic Styles in Canada: The LITHOPROBE Perspective (Percival, J.A., Cook, F.A and Clowes, R.M., editors). Geological Association of Canada, Special Paper 49, Chapter 3.
Robb, L.J., Armstrong, R.A. and Waters, D.J. (1999) The history of granulite-facies metamorphism and crustal growth from single zircon U-Pb geochronology: Namaqualand, South Africa. Journal of Petrology, 40, 17471770.
Santosh, M., Liu, S.-J., Tsunogae, T. and Li, J.-H. (2012) Paleoproterozoic ultrahigh temperature granulites in the North China Craton: implications for tectonic models on extreme crustal metamorphism. Precambrian Research, 222–223, 77106.
Schorn, S., Diener, J. F. A., Powell, R. and Stüwe, K. (2018) Thermal buffering in the orogenic crust. Geology, 46, 643646.
Sizova, E., Gerya, T. and Brown, M. (2014) Contrasting styles of Phanerozoic and Precambrian continental collision. Gondwana Research, 25, 522545.
Sizova, E., Gerya, T., Stüwe, K. and Brown, M. (2015) Generation of felsic crust in the Archean: a geodynamic modeling perspective. Precambrian Research, 271, 198224.
Sizova, E., Gerya, T., Brown, M. and Stüwe, K. (2018) What drives metamorphism in early Archean greenstone belts? Insights from numerical modeling. Tectonophysics, 746, 587601.
Smithies, R.H., Howard, H.M., Evins, P.M., Kirkland, C.L., Kelsey, D.E., Hand, M., Wingate, M.T.D., Collins, A.S., Belousova, E. (2011) High-temperature granite magmatism, crust-mantle interaction and the Mesoproterozoic intracontinental evolution of the Musgrave Province, central Australia. Journal of Petrology, 52, 931958.
Spencer, C.J., Murphy, J.B., Kirkland, C.L., Liu, Y.B. and Mitchell, R.N. (2018) A Palaeoproterozoic tectono-magmatic lull as a potential trigger for the supercontinent cycle. Nature Geoscience, 11, 97101.
St-Onge, M.R., Searle, M.P. and Wodicka, N. (2006) Trans-Hudson orogen of North America and Himalaya-Karakoram-Tibetan orogen of Asia: structural and thermal characteristics of the lower and upper plates. Tectonics, 25, 122.
Stüwe, K. (1995) Thermal buffering effects at the solidus – Implications for the equilibration of partially melted metamorphic rocks. Tectonophysics, 248, 3951.
Stüwe, K. (2007) Geodynamics of the Lithosphere, 2nd Edition. Springer-Verlag, Berlin, Heidelberg, New York, USA, 445 pp.
Taylor, S.R. and McLennan, S.M. (1985) The Continental Crust: Its Composition and Evolution. Blackwell Scientific, Oxford, UK, pp. 312.
Turner, F.J. (1968) Metamorphic Petrology. McGraw-Hill Book Co., New York, USA.
van Hunen, J. and Allen, M.B. (2011) Continental collision and slab break-off: a comparison of 3-D numerical models with observations. Earth and Planetary Science Letters, 302, 2737.
van Hunen, J. and Moyen, J.F. (2012) Archean Subduction: Fact or Fiction? Annual Review of Earth and Planetary Sciences, 40, 195219.
Walsh, A.K., Kelsey, D.E., Kirkland, C.L., Hand, M., Smithies, R.H., Clark, C. and Howard, H.M. (2014) P–T–t evolution of a large, long-lived, ultrahigh-temperature Grenvillian belt in central Australia. Gondwana Research, 28, 534561.
Weller, O.M. and St-Onge, M.R. (2017) Record of modern-style plate tectonics in the Palaeoproterozoic Trans-Hudson orogen. Nature Geoscience, 10, 305311.
Wen, B., Evans, D.A.D., Wang, C., Li, Y.-X. and Jing, X.Q. (2018) A positive test for the Greater Tarim Block at the heart of Rodinia: Mega-dextral suturing of supercontinent assembly. Geology, 46, 687690.
Willigers, B.J.A., van Gool, J.A.M., Wijbrans, J.R., Krogstad, E.J. and Mezger, K. (2002) Post tectonic cooling of the Nagssugtoqidian orogen and a comparison of contrasting cooling histories in Precambrian and Phanerozoic orogens. The Journal of Geology, 110, 503517.
Yakymchuk, C. and Brown, M. (2019) Divergent behaviour of Th and U during anatexis: Implications for the thermal evolution of orogenic crust. Journal of Metamorphic Geology,


Time's arrow, time's cycle: Granulite metamorphism and geodynamics

  • Michael Brown (a1) and Tim Johnson (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed