Skip to main content Accessibility help
×
Home

Thermooxidative degradation of injection-moulded sepiolite/polyamide 66 nanocomposites

  • A. Yebra-Rodríguez (a1), C. Fernández-Barranco (a1), M. D. La Rubia (a2), A. Yebra (a3), A. B. Rodríguez-Navarro (a4) and J. Jiménez-Millán (a1)...

Abstract

Clay/polymer nanocomposites (CPN) exhibit improved technical properties compared to their microand macro-counterparts. Nevertheless, thermal degradation of CPN may limit the applicability of these hybrid materials. In this paper accelerated ageing (110°C and 150°C) was performed in injection moulded pure polyamide 66 (PA66-S-0 samples) and polyamide 66 reinforced with 5 wt.% sepiolite (PA66-S-5 samples) CPN. Polymer degradation was monitored by the amount of newly formed carbonyl bonds. The carbonyl indices obtained indicate that degradation occurs to a greater extent as the temperature of the ageing process increases. Moreover, the degradation increases with time at the highest treatment temperature (150°C). On the other hand, the occurrence of carbonaceous silicates in the nanocomposite samples at high temperatures yields greater thermal stability of sepiolite/PA66 nanocomposites compared to pure PA66. Furthermore, the sepiolite nanofibres maintain their position in the reticulated semicrystalline structure. In agreement with those results, differential scanning calorimetry and X-ray diffraction analyses show that the motion of the amide groups in the polymer chains are constrained by the well dispersed sepiolite.

Copyright

Corresponding author

* E-mail: ayebra@ujaen.es

References

Hide All
Ahlrichs, J.L., Serna, C. and Serratosa, J.M., (1975) Structural hydroxyls in sepiolites. Clays and Clay Minerals, 23, 119–124.
Alena, K., Dagmar, M., Francois, G.J., and Miroslav, S. (2013) Polymer/clay nanocomposites and their gas barrier properties. Polymer Composites, 34, 1418–1424.
Ammala, A., Hill, A.J., Meakin, P., Pas, S.J., and Turney, T.W., (2002) Degradation studies of polyolefins incorporating transparent nanoparticulate zinc oxide UV stabilizers. Journal of Nanoparticle Research, 4, 167–174.
Araújo, E.M., Barbosa, R., Rodrigues, A.W.B., Melo, T.J.A. and Ito, E.N., (2007) Processing and characterization of polyethylene/Brazilian clay nanocomposites. Materials Science and Engineering A, 445–446, 141–147.
ASTM (1996) Standards on Color and Appearance Measurements, 5th Edition. ASTM International, West Conshohocken, Pennsylvania, USA.
Balakrishnan, S. and Raghavan, D. (2003) Chemically functionalized clay epoxy nanocomposites for aerospace applications. Technical Proceedings of the 2003 Nanotechnology Conference and Trade Show, 3, 250–253.
Bernstein, R., Derzon, D.K., and Gillen, K.T., (2005) Nylon 6.6 accelerated aging studies: Thermaloxidative degradation and its interaction with hydrolysis. Polymer Degradation and Stability, 88, 480–488.
Brill, R. (1942) über das Verhalten von Polyamiden beim Erhitzen. Journal für Praktische Chemie, 161, 49–64.
Bunn, C.W., and Garner, E.V., (1947) The crystal structures of two polyamides (“nylons”). Proceedings of the Royal Society of London. A: Mathematical and Engineering Sciences, 189, 39–68.
Cerruti, P. and Carfagna, C. (2010) Thermal-oxidative degradation of polyamide 6,6 containing metal salts. Polymer Degradation and Stability, 95, 2405–2412.
Choudalakis, G. and Gotsis, A.D., (2009) Permeability of polymer/clay nanocomposites: a review. European Polymer Journal, 45, 967–984.
Dasgupta, S., Hammond, W.B., Goddard III, W.A., (1996) Crystal structures and properties of nylon polymers from theory. Journal of the American Chemical Society, 118, 12291–12301.
Davis, R.D., Gilman, J.W., and VanderHart, D.L., (2003) Processing degradation of polyamide 6/montmorillonite clay nanocomposites and clay organic modifier. Polymer Degradation and Stability, 79, 111–121.
de SousaRodrigues, L.A., Figueiras, A., Veiga, F., Mendes de Freitas, R., Cunha Nunes, L.C., da Silva Filho, E.C., and da Silva Leite, C.M., (2013) The systems containing clays and clay minerals from modified drug release: A review. Colloids and Surfaces B: Biointerfaces, 103, 642–651.
Dong, W. and Gijsman, P. (2010) Influence of temperature on the thermo-oxidative degradation of polyamide 6 films. Polymer Degradation and Stability, 95, 1054–1062.
Fernández-Barranco, C., Yebra-Rodríguez, A., La Rubia- Garcia, M.D., Navas-Martos, F.J., and Alvarez- Lloret, P. (2014) Mechanical and crystallographic properties of injection-molded polyamide66/sepiolite nanocomposites with different clay loading. Polymer Composites, (in press).
Fornes, T.D., Yoon, P.J., and Paul, D.R., (2003) Polymer matrix degradation and color formation in melt processed nylon 6/clay nanocomposites. Polymer, 44, 7545–7556.
Ghinea, R., Pérez, M.M., Herrera, L.J., Rivas, M.J., Yebra, A. and Paravina, R.D., (2010) Color difference thresholds in dental ceramics. Journal of Dentistry, 38, e57–e64.
Ghosh, S., Khastgir, D., Bhowmick, A.K., and Mukunda, P.G., (2000) Thermal degradation and ageing of segmented polyamides. Polymer Degradation and Stability, 67, 427–436.
Gijsman, P., Tummes, D. and Janssen, K. (1995) Differences and similarities in the thermooxidative degradation of polyamide 46 and 66. Polymer Degradation and Stability, 49, 121–125.
Hindeleh, A.M., and Johnson, D.J., (1978) Crystallinity and crystallite size measurement in polyamide and polyester fibres. Polymer, 19, 27–32.
Hong, C.H., Lee, Y.B., Bae, J.W., Jho, J.Y., Nam, B.U., and Hwang, T.W., (2005) Preparation and mechanical properties of polypropylene/ clay nanocomposites for automotive parts application. Journal of Applied Polymer Science, 98, 427–433.
ISO 4892-1 (2014) Methods of exposure to laboratory light sources. International Organization for Standardization, http://www.iso.org/iso/home.htm.
Ito, M. and Nagai. K. (2010) Thermal ageing and oxygen permeation of nylon-6 and nylon6/montmorillonite composites. Journal of Applied Polymer Science, 118, 928–935.
Itoh, T. (1976) Change with temperature in crystal structures of nylons 6, 66 and 610. Japanese Journal of Applied Physics, 15, 2295–2306.
Jain, A. and Vijayan, K. (2002) Effect of thermal ageing on Nylon 6,6 fibres. Journal of Materials Science, 37, 2623–2633.
Jang, B.N., and Wilkie, C.A., (2005) The effects of clay on the thermal degradation behavior of poly(styrebeco- acrylonitirile). Polymer, 46, 9702–9713.
Jones, B.F., and Galán, E. (1988) Sepiolite and palygorskite. Pp. 631–674 in: Hydrous Phyllosilicates (Exclusive of Micas) (S.W. Bailey, editor). Reviews in Mineralogy and Geochemistry, 19. Mineralogical Society of America, Washington, DC.
Karmalm, P., Hjertberg, T., Jansson, A. and Dahl, R. (2009) Thermal stability of poly(vinyl chloride) with epoxidised soybean oil as primary plasticizer. Polymer Degradation and Stability, 94, 2275–2281.
Kartalis, C.N., Papaspyrides, C.D., Pfaendner, R., Hoffmann, K. and Herbst, H. (2001) Recycled and restabilized HDPE bottle crates: Retention of critical properties after heat aging. Polymer Engineering & Science, 41, 771–781.
Kazaryan, L.G., Zezina, L.A., and Pavlov, N.N., (1987) Thermal expansion of the crystalline lattice of polyamides. Polymer Science USSR, 29, 1052–1058.
Kiliaris, P., Papaspyrides, C.D., and Pfaendner, R. (2009) Influence of accelerated aging on clay-reinforced polyamide 6. Polymer Degradation and Stability, 94, 389–396.
Lee, S.S., and Phillips, P.J., (2007) Melt crystallized polyamide 6.6 and its copolymers, Part I. Melting point – Lamellar thickness relations in the homopolymer. European Polymer Journal, 43, 1933–1951.
Levchik, S.V., Weil, E.D., and Lewin, M. (1999) Thermal decomposition of aliphatic nylons. Polymer International, 48, 532–557.
Liu, X. and Wu, Q. (2002) Polyamide 66/clay nanocomposites via me lt intercalation. Macromolecular Materials and Engineering, 287, 180–186.
Lu, Y., Zhang, G., Feng, M., Zhang, Y., Yang, M. and Shen, D. (2003) Hydrogen bonding in polyamide 66/ clay nanocomposite. Journal of Polymer Science Part B: Polymer Physics, 41, 2313–2321.
Murthy, N.S., (2006) Hydrogen bonding, mobility, and structural transitions in aliphatic polyamides. Journal of Polymer Science: Part B: Polymer Physics, 44, 1763–1782.
Pandey, J.K., Reddy, R., Kumar, A.P., and Singh R.P. (2005) An overview on the degradability of polymer nanocomposites. Polymer Degradation and Stability, 88, 234–250.
Pérez, M.M., Melgosa, M., El Moraghi, A. and Hita, E. (2000) Usefulness of cathode ray tube color displays in chromaticity–discrimination experiments. Applied Optics, 22, 4021–4030.
Qin, H., Su, Q., Zhang, S., Zhao, B. and Yang, M. (2003) Thermal stability and flammability of polyamide 66/montmorillonite nanocomposites. Polymer, 44, 7533–7538.
Rao, Y. and Pochan, J.M., (2007) Mechanics of polymerclay nanocomposites. Macromolecules, 40, 290–296.
Reis, K.C., and Canevarolo, S.V., (2012) Evaluation of the structure of polypropylene/montmorillonite nanocomposite by in-line light extinction and color measurements during multiple extrusions. Polymer Engineering & Science, 52, 1784–1794.
Rhim, J.W., Park, H.M., and Ha, C.S., (2013) Bionanocomposites for food packaging applications. Progress in Polymer Science, 38, 1629–1652.
Rodríguez-Navarro, A., (2006) XRD2DScan: new software for polycrystalline materials characterization using two-dimensional X-ray diffraction. Journal of Applied Crystallography, 39, 905–909.
Ruiz-Hitzky, E., and Van Meerbeek, A. (2006) Clay mineral- and organoclay-polymer nanocomposite. Pp. 583–621 in: Developments in Clay Science, 1 (F. Bergaya, B.K.G. Theng and G. Lagaly, editors). Elsevier, Amsterdam.
Sancaktar, E. and Kuznicki, J. (2011) Nanocomposite adhesives: mechanical behavior with nanoclay. International Journal of Adhesion and Adhesives, 31, 286–300.
Shamey, R. and Sinha, K. (2003) A review of degradation of nylon 6.6 as a result of exposure to environmental conditions. Review of Progress in Coloration and Related Topics, 33, 93–107.
Starkweather, H.W. Jr., (1989) Deconvolution of the excess heat capacity of the Brill transition in nylon 66. Macromolecules, 22(4), 2000–2003.
UNE-EN ISO 527-2 (2012). Plásticos. Determinación de las propiedades en tracción. Parte 2: Condiciones de ensayo de plásticos para moldeo y extrusión. Madrid. Uribe-Calderon, J., Lennox, B. and Kamal, M.R., (2008) Thermally stable phosphonium-montmorillonite organoclays. Applied Clay Science, 40, 90–98.
Usuki, A., Hasegawa, N. and Kato, M. (2005) Polymerclay nanocomposites. Advanced Polymer Science, 179, 135–195.
Usuki, A., Kojima, Y., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T. and Kamigaito, O. (1993) Synthesis of nylon 6-clay hybrid. Journal of Materials Research, 8, 1179–1184.
VanderHart, D.L., Asano, A. and Gilman, J.W., (2001a) NMR measurements related to clay-dispersion quality and organic-modifier stability in nylon-6/ clay nanocomposites. Macromolecules, 34, 3819–3822.
VanderHart, D.L., Asano, A. and Gilman, J.W., (2001b) Solid-state NMR investigation of paramagnetic nylon-6 clay nanocomposites. 1. Crystallinity, morphology, and the direct influence of Fe3+ on nuclear spins. Chemistry of Materials, 13, 3796–3809.
Vasanthan, N., Murthy, N.S., and Bray, R.G., (1998) Investigation of Brill transition in nylon 6 and nylon 6,6 by infrared spectroscopy. Macromolecules, 31, 8433–8435.
Warwicker, J.O., (1970) The structural causes of the Starkweather, H.W. Jr., (1989) Deconvolution of the excess heat capacity of the Brill transition in nylon 66. Macromolecules, 22(4), 2000–2003.
UNE-EN ISO 527-2 (2012). Plásticos. Determinación de las propiedades en tracción. Parte 2: Condiciones de ensayo de plásticos para moldeo y extrusión. Madrid. Uribe-Calderon, J., Lennox, B. and Kamal, M.R., (2008) Thermally stable phosphonium-montmorillonite organoclays. Applied Clay Science, 40, 90–98.
Usuki, A., Hasegawa, N. and Kato, M. (2005) Polymerclay nanocomposites. Advanced Polymer Science, 179, 135–195.
Usuki, A., Kojima, Y., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T. and Kamigaito, O. (1993) Synthesis of nylon 6-clay hybrid. Journal of Materials Research, 8, 1179–1184.
VanderHart, D.L., Asano, A. and Gilman, J.W., (2001a) NMR measurements related to clay-dispersion quality and organic-modifier stability in nylon-6/ clay nanocomposites. Macromolecules, 34, 3819–3822.
VanderHart, D.L., Asano, A. and Gilman, J.W., (2001b) Solid-state NMR investigation of paramagnetic nylon-6 clay nanocomposites. 1. Crystallinity, morphology, and the direct influence of Fe3+ on nuclear spins. Chemistry of Materials, 13, 3796–3809.
Vasanthan, N., Murthy, N.S., and Bray, R.G., (1998) Investigation of Brill transition in nylon 6 and nylon 6,6 by infrared spectroscopy. Macromolecules, 31, 8433–8435.
Warwicker, J.O., (1970) The structural causes of the dyeing variations of nylon yarns subjected to dry heat. Journal of the Society of Dyers and Colourists, 86, 303–310.
Xie, W., Gao, Z., Pan, W.P., Hunter, D., Singh, A. and Vaia, R. (2001) Thermal degradation chemistry of alkyl quaternary ammonium montmorillonite. Chemistry of Materials, 13, 2979–2990.
Yebra-Rodríguez, A., Á lvarez-Lloret, P., Rodríguez- Navarro, A.B., Martín-Ramos, J.D., and Cardell, C. (2009a) Thermo-XRD and differential scanning calorimetry to trace epitaxial crystallization in PA6/montmorillonite nanocomposites. Materials Letters, 63, 1159–1161.
Yebra-Rodríguez, A., Á lvarez-Lloret, P., Cardell, C. and Rodríguez-Navarro, A.B., (2009b) Crystalline properties of injection molded polyamide-6 and polyamide- 6/montmorillonite nanocomposites. Applied Clay Science, 43, 91–97.
Yebra-Rodríguez, A., Alvarez-Lloret, P., Yebra, A., Cardell, C. and Rodríguez-Navarro, A.B., (2011) Influence of processing conditions on the optical and crystallographic properties of injection molded polyamide-6 and polyamide-6/montmorillonite nanocomposites. Applied Clay Science, 51, 414–418.
Yoon, P.J., Fornes, T.D., and Paul, D.R., (2002) Thermal expansion behavior of nylon 6 nanocomposites. Polymer, 43, 6727–6741.
Zhao, X., Li, X., Ye, L. and Li, G. (2012) Stressthermooxidative aging behavior of polyamide 6. Journal of Applied Polymer Science, 129, 1193–1201.

Keywords

Related content

Powered by UNSILO

Thermooxidative degradation of injection-moulded sepiolite/polyamide 66 nanocomposites

  • A. Yebra-Rodríguez (a1), C. Fernández-Barranco (a1), M. D. La Rubia (a2), A. Yebra (a3), A. B. Rodríguez-Navarro (a4) and J. Jiménez-Millán (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.