Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-24T03:05:37.121Z Has data issue: false hasContentIssue false

Thermal expansion of alunite up to dehydroxylation and collapse of the crystal structure

Published online by Cambridge University Press:  05 July 2018

M. Zema*
Affiliation:
Dipartimento di Scienze della Terra e dell’Ambiente, Universitá di Pavia, via Ferrata 1, I-27100 Pavia, Italy
A. M. Callegari
Affiliation:
Dipartimento di Scienze della Terra e dell’Ambiente, Universitá di Pavia, via Ferrata 1, I-27100 Pavia, Italy Sistema Museale di Ateneo, Universitá di Pavia, Corso Strada Nuova 65, I-27100 Pavia, Italy
S. C. Tarantino
Affiliation:
Dipartimento di Scienze della Terra e dell’Ambiente, Universitá di Pavia, via Ferrata 1, I-27100 Pavia, Italy
E. Gasparini
Affiliation:
Dipartimento di Scienze della Terra e dell’Ambiente, Universitá di Pavia, via Ferrata 1, I-27100 Pavia, Italy
P. Ghigna
Affiliation:
Dipartimento di Chimica, Universitá di Pavia, Viale Taramelli 16, I-27100 Pavia, Italy

Abstract

The high-temperature (HT) behaviour of a sample of natural alunite was investigated by means of in situ HT single-crystal X-ray diffraction from room temperature up to the dehydroxylation temperature and consequent collapse of the crystal structure. In the temperature range 25–500°C, alunite expands anisotropically, with most of the contribution to volume dilatation being produced by expansion in the c direction. The thermal expansion coefficients determined over the temperature range investigated are: αa = 0.61(2) × 10–5 K–1 (R2 = 0.988), αc = 4.20(7) × 10–5 K–1 (R2 = 0.996), αca = 6.89, αV = 5.45(7) × 10–5 K–1 (R2 = 0.998). At ∼275–300°C, a minor discontinuity in the variation of unit-cell parameters with temperature is observed and interpreted on the basis of loss of H3O+ that partially substitutes for K+ at the monovalent A site in the alunite structure. Increasing temperature causes the Al(O,OH)6 sheets, which remain almost unaltered along the basal plane, to move further apart, and this results in an expansion of the coordination polyhedron around the intercalated potassium cation. Sulfate tetrahedra act as nearly rigid units, they contract a little in the lower temperature range to accommodate the elongation of the Al octahedra.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ballhorn, R., Brunner, H. and Schwab, R.G. (1989) Artificial compounds of the crandallite type: a new material for separation and immobilization of fission products. Scientific Basis for Nuclear Wast. Management, 12, 249252 Google Scholar
Bayliss, P., Kolitsch, U., Nickel, E.H. and Pring, A. (2010) Alunite supergroup: recommended nomenclature. Mineralogica. Magazine, 74, 919927 Google Scholar
Berman, R.G. (1988) Internally-consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3- SiO2-TiO2-H2O-CO2. Journal of Petrology, 29, 445522 CrossRefGoogle Scholar
Blessing, R.H., Coppens, P. and Becker, P. (1974) Computer analysis of step-scanned X-ray data. Journal of Applie. Crystallography, 7, 488492 CrossRefGoogle Scholar
Bohmhammel, K., Naumann, R. and Paulik, F. (1987) Thermoanalytical and calorimetric investigations on the formation and decomposition of some alunites. Thermochimic. Acta, 121, 109119 Google Scholar
Busing, W.R. and Levy, H.A. (1964) The effect of thermal motion on the estimation of bond lengths from di f fraction measurements . Ac. Crystallographica, 17, 142146 CrossRefGoogle Scholar
Dill, H.G. (2001) The geology of aluminium phosphates and sulphates of the alunite group minerals: a review. Earth Science Reviews, 53, 3593.CrossRefGoogle Scholar
Fei, Y. (1995) Thermal expansion. Pp. 29-44 in: AGU Reference Shelf 2: Mineral Physics and Crystallography - a Handbook of Physical Constants(T.J. Ahrens, editor). American Geophysical Union, Washington DC. Google Scholar
Fink, W.L., Van Horn, K.R. and Pazour, H.A. (1931) Thermal decomposition of alunite. Industrial and Engineerin. Chemistry, 23, 12481250 Google Scholar
Härtig, C., Brand, P. and Bohmhammel, K. (1984) Fe- Al-Isomorphie und Strukturwasser in Kristallen vom Jarosit-Alunit-Type. Zeitschrift für anorganische und allgemein. Chemie, 508, 159164 Google Scholar
Hendricks, S.B. (1937) The crystal structures of alunite and the jarosites. America. Mineralogist, 22, 773784 Google Scholar
Holland, T.J.B. and Powell, R. (1998) An internally consistent thermodynamic data set for phases of petrological interest. Journal of Metamorphi. Geology, 16, 309343 Google Scholar
Ibers, J.A. and Hamilton, W.C. (1974) International Tables for X-ray Crystallography. Kynoch Press, Birmingham, UK.Google Scholar
Jambor, J.L. (1999) Nomenclature of the alunite supergroup. The Canadian Mineralogist, 37, 13231341 Google Scholar
Johnson, C.K. (1970a) Generalized treatments for thermal motion. Pp. 132-160 in: Thermal Neutron Diffraction (B.T.M. Willis, editor). Oxford University Press, Oxford, K.Google Scholar
Johnson, C.K. (1970b) An introduction to thermal motion analysis. Pp. 220-226 in: Crystallographic Computing (F.R. Ahmed, editor). Munksgaard, Copenhagen, Denmark..Google Scholar
Katsioti, M., Boura, P., Agatzini, S., Tsakiridis, P.E. and Oustadakis, P. (2005) Use of jarosite/alunite precipitate as a substitute for gypsum in Portland cement. Cement and Concrete Composites, 27, 39.CrossRefGoogle Scholar
Kolitsch, U., Tiekink, E.R.T., Slade, P.G., Taylor, M.R. and Pring, A. (1999) Hinsdalite and plumbogummite, their atomic arrangements and disordered lead sites. Europea. Journal of Mineralogy, 11, 513—520CrossRefGoogle Scholar
Kristóf, J., Frost, R.L., Palmer, S.J., Horváth, E. and Jakab, E. (2010) Thermoanalytical studies of natural potassium, sodium and ammonium alunites. Journal of Thermal Analysis an. Calorimetry, 100, 961966 Google Scholar
Lehman, M.S. and Larsen, F.K. (1974) A method for location of the peaks in step-scan measured Bragg reflections. Act Crystallographica, A30, 580584 CrossRefGoogle Scholar
Majzlan, J., Speziale, S., Duffy, T.S. and Burns, P.C. (2006) Single-crystal elastic properties of alunite, KAl3(SO4)2(OH)6. Physics an. Chemistry of Minerals, 33, 567573 CrossRefGoogle Scholar
Menchetti, S. and Sabelli, C. (1976) Crystal chemistry of the alunite series: crystal structure refinement of alunite and synthetic jarosite. Neues Jahrbuch für Mineralogie, Monashefte, H9, 406417 Google Scholar
Mills, S.J., Hatert, F., Nickel, E.H. and Ferraris, G. (2009) The standardisation of mineral group hierarchies: application to recent nomenclature proposals. Europea. Journal of Mineralogy, 21, 10731080 CrossRefGoogle Scholar
North, A.C.T., Phillips, D.C. and Mathews, F.S. (1968) A semi-empirical method of absorption correction. Act Crystallographica, A24, 351359 CrossRefGoogle Scholar
Özacar, M. (2003) Phosphate adsorption characteristics of alunite to be used as a cement additive. Cement and Concret. Research, 33, 15831587 Google Scholar
Ripmeester, J.A., Ratcliffe, Ch.I., Dutrizac, J.E. and Jambor, J.L. (1986) Oxonium in the alunite-jarosite group. The Canadia. Mineralogist, 23, 435447 Google Scholar
Robinson, K., Gibbs , G.V. and Ribbe, P.H. (1971) Quadratic elongation, a quantitative measure of distortion in co-ordination polyhedra. Science, 172, 567570 CrossRefGoogle Scholar
Rudolph, W.W., Mason, R. and Schmidt, P. (2003) Synthetic alunites of the potassium-oxonium solid solution series and some other members of the group: synthesis, thermal and X-ray characterization. Europea. Journal of Mineralogy, 15, 913924 CrossRefGoogle Scholar
Scheringer, C. (1972) A lattice dynamical treatment of the thermal motion bond-length correction. Act Crystallographica, A28, 616619 CrossRefGoogle Scholar
Schukow, H., Breitinger, D.K., Zeiske, T., Kubanek, F., Mohr, J. and Schwab, R.G. (1999) Localization of hydrogen and content of oxonium cations in alunite via neutron diffraction. Zeitschrift für Anorganische und Allgemein. Chemie, 625, 10471050 Google Scholar
Sengil, I.A. (1995) The utilization of alunite ore as a coagulant aid. Wate. Research, 29, 1988—1992Google Scholar
Sheldrick, G.M. (1998) SHELX97 - Programs for Crystal Structure Analysis (Release 97-2). Institut fü r Anorganische Chemie der Universität, Gö ttingen, Germany.Google Scholar
Stoffregen, R.E. and Alpers, C.N. (1992) Observations on the unit cell parameters, water contents and dD of natural and synthetic alunites. America. Mineralogist, 77, 10921098 Google Scholar
Stoffregen, R.E., Alpers, C.N. and Jambor, J.L. (2000) Alunite-jarosite crystallography, thermodynamics, and geochronology. Pp. 453-479 in: Sulfate Minerals: Crystallography, Geochemistry, and Environmental Significance (C.N. Alpers, J.L. Jambor and D.K. Nordstrom, editors). Reviews in Mineralogy and Geochemistry, 40.Mineralogical Society of America, Washington DC and the Geochemical Society, St Louis, Missouri, USA.Google Scholar
Xu, H., Zhao, Y., Vogel, S.C., Hickmott, D.D., Daemen, L.L. and Hartl, M.A. (2010) Thermal expansion and decomposition of jarosite: a high-temperature neutron diffraction study. Physics an. Chemistry of Minerals, 37, 7382 CrossRefGoogle Scholar
Wang, R., Bradley, W.F. and Steinfink, H. (1965) The crystal structure of alunite. Acta Crystallographica, 18, 249.CrossRefGoogle Scholar