Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-20T23:05:37.178Z Has data issue: false hasContentIssue false

Thermal expansion behaviour of orthopyroxenes: the role of the Fe-Mn substitution

Published online by Cambridge University Press:  02 January 2018

L. Scandolo
Affiliation:
Dipartimento di Scienze della Terra e dell’Ambiente, Universita` degli Studi di Pavia, Italy
M. L. Mazzucchelli
Affiliation:
Dipartimento di Scienze della Terra e dell’Ambiente, Universita` degli Studi di Pavia, Italy
M. Alvaro*
Affiliation:
Dipartimento di Geoscienze, Universita` degli Studi di Padova, Italy
F. Nestola
Affiliation:
Dipartimento di Geoscienze, Universita` degli Studi di Padova, Italy
F. Pandolfo
Affiliation:
Dipartimento di Scienze della Terra e dell’Ambiente, Universita` degli Studi di Pavia, Italy
M. C. Domeneghetti
Affiliation:
Dipartimento di Scienze della Terra e dell’Ambiente, Universita` degli Studi di Pavia, Italy

Abstract

Two Pbca orthopyroxene samples, donpeacorite (DP N.1) and enstatite (B22 N.60) with chemical formulae Mn0.54Ca0.03Mg1.43Si2O6 (XMn = 0.27) and Fe0.54Ca0.03Mg1.43Si2O6 (XFe = 0.27), respectively, were investigated by single-crystal X-ray diffraction at high-temperature conditions.

The nearly identical XFe and XMn make the two samples the perfect candidates to investigate the effect of the compositional change at the M2 site (i.e. Fe-Mn substitution) on the thermal expansion behaviour of orthopyroxenes.

Therefore, the unit-cell parameter thermal expansion behaviour of both samples has been investigated in the temperature range between room T and 1073 K. No evidence for phase transitions was found over that range. The two samples have been previously disordered with an ex situ annealing at ∼1273 K.

The unit-cell parameters and volume thermal expansion data, collected on the disordered samples, have been fitted to a Fei Equation of State (EoS) and the following coefficients obtained: V0 = 853.35(4) Å3, αV,303K = 2.31(24) × 10–5 K–1 and V0 = 845.40(6) Å3, αV,303K = 2.51(25) × 10–5 K–1 for DP N.1 and B22 N.60, respectively.

While there is no difference in the volume thermal expansion coefficient as a function of composition and the expansion along the b direction is nearly identical for both samples, slight differences have been found along a and c lattice directions. The thermal expansion along the a direction is counterbalanced by that along c being responsible for the changes in lattice expansion scheme from αb > αc > αa at room T, to αc > αb > αa at high T. Therefore, as a result of the different behaviour along a and c, the unit-cell volume thermal expansion for both samples is identical within estimated standard deviations. The negligible effect of the Fe-Mn substitution on the bulk thermal expansion can be applied when dealing with geothermobarometry based on the elastic host-inclusion approach (e.g. Nestola et al., 2011; Howell et al., 2010; Angel et al., 2014 a, b, 2015). In fact, though the compressibility effect is still not known, the nearly identical thermal expansion coefficients will not affect the entrapment pressure (Pe).

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Dipartimento di Scienze della Terra e dell’Ambiente, Universita` degli Studi di Pavia, Italy

References

Alvaro, M., Cámara, F., Domeneghetti, M., Nestola, F. and Tazzoli, V. (2011) HT P21/c–C2/c phase transition and kinetics of Fe2+-Mg order-disorder of an Fe-poor pigeonite: implications for the cooling history of ureilites. Contributions to Mineralogy and Petrology 162, 599-613.CrossRefGoogle Scholar
Alvaro, M., Domeneghetti, M.C., Fioretti, A.M., Cámara, F. and Marinangeli, L. (2015) A new calibration to determine the closure temperatures of Fe-Mg ordering in augite from nakhlites. Meteoritics & Planetary Science, DOI: 10.1111/maps.12436.CrossRefGoogle Scholar
Angel, R.J. and Jackson, J.M. (2002) Elasticity and equation of state of orthoenstatite, MgSiO3 . American Mineralogist 87, 558-561.CrossRefGoogle Scholar
Angel, R.J., Gonzalez-Platas, J. and Alvaro, M. (2014a) EosFit7c and a Fortran module (library) for equation of state calculations. Zeitschrift für Kristallographie 229, 405-419.Google Scholar
Angel, R.J., Mazzucchelli, M.L., Alvaro, M., Nimis, P. and Nestola, F. (2014b) Geobarometry from hostinclusion systems: the role of elastic relaxation. American Mineralogist 99, 2146-2149.CrossRefGoogle Scholar
Angel, R.J., Alvaro, M., Nestola, F. and Mazzucchelli, M.L. (2015) Diamond thermoelastic properties and implications for determining the pressure of formation of diamond inclusion systems. Russian Geology and Geophysics Journal 56, 211-220.CrossRefGoogle Scholar
Balić Žunić, T. and Vicković, I. (1996) IVTON – a program for the calculation of geometrical aspects of crystal structures and some crystal chemical applications. Journal of Applied Crystallography 29, 305-306.CrossRefGoogle Scholar
Bass, J.D. and Anderson, D.L. (1984) Composition of the upper mantle: Geophysical tests of two petrological models. Geophysical Research Letters 11, 229-232.CrossRefGoogle Scholar
Berman, R.G. (1988) Internally-consistent thermodynamic data for minerals in the system Na2O–K2O– CaO–MgO–FeO—Fe2O3–Al2O3–SiO2–TiO2–H2O– CO2 . Journal of Petrology 29, 445-522.CrossRefGoogle Scholar
Blessing, R.H. (1995) An empirical correction for absorption anisotropy. Acta Crystallographica Section A 51, 33-38.Google ScholarPubMed
Brown, P.E., Essene, E.J. and Peacor, D.R. (1980) Phase relations inferred from field data for Mn pyroxenes and pyroxenoids. Contributions to Mineralogy and Petrology 74, 417-425.CrossRefGoogle Scholar
Domeneghetti, M.C. and Steffen, G. (1992) M1, M2 site populations and distortion parameters in synthetic Mg-Fe orthopyroxenes from Mössbauer spectra and X-ray structure refinements. Physics and Chemistry of Minerals 19, 298-306.CrossRefGoogle Scholar
Domeneghetti, M.C., Molin, G.M. and Tazzoli, V. (1985) Crystal-chemical implications of the Mg2+- Fe2+ distribution in orthopyroxenes. American Mineralogist 70, 987-995.Google Scholar
Domeneghetti, M.C., Molin, G.M. and Tazzoli, V. (1995) A crystal-chemical model for Pbca orthopyroxene. American Mineralogist 80, 253-267.CrossRefGoogle Scholar
Domeneghetti, M.C., Fioretti, A.M., Cámara, F., Molin, G. and Tazzoli, V. (2007) Thermal history of ALH 84001 meteorite by Fe2+-Mg ordering in orthopyroxene. Meteoritics & Planetary Science 42, 1703-1710.CrossRefGoogle Scholar
Domeneghetti, M., Fioretti, A., Cámara, F., McCammon, C. and Alvaro, M. (2013) Thermal history of nakhlites: a comparison between MIL 03346 and its terrestrial analogue Theo’s flow. Geochimica et Cosmochimica Acta 121, 571-581.CrossRefGoogle Scholar
Fei, Y. (1995) Thermal expansion. Pp. 29-44. in: Mineral Physics and Crystallography: a Handbook of Physical Constants (T.J. Ahrens, editor). AGU Reference Shelf, Vol. 2. American Geophysical Union, Washington, DC.Google Scholar
Fioretti, A.M., Domeneghetti, M.C., Molin, G., Cámara, F. , Alvaro, M. and Agostini, L. (2007) Reclassification and thermal history of Trenzano chondrite. Meteoritics & Planetary Science 42, 2055-2066.CrossRefGoogle Scholar
Frisillo, A.L. and Barsch, G.R. (1972) Measurement of single-crystal elastic constants of bronzite as a function of pressure and temperature. Journal of Geophysical Research 77, 6360-6384.CrossRefGoogle Scholar
Frisillo, A.L. and Buljan, S.T. (1972) Linear thermal expansion coefficients of orthopyroxene to 1000ºC. Journal of Geophysical Research 77, 7115-7117.CrossRefGoogle Scholar
Ganguly, J. and Domeneghetti, M.C. (1996) Cation ordering of orthopyroxenes from the Skaergaard Intrusion: implications for the subsolidus cooling rates and permeabilities. Contributions to Mineralogy and Petrology 122, 359-367.CrossRefGoogle Scholar
Gatta, G., Rinaldi, R., Knight, K., Molin, G. and Artioli, G. (2007a) In-situ high-temperature thermo-elastic behavior and structural response of a mantle orthopyroxene by neutron powder diffraction up to 1200ºC. Proceedings of the VI Congress of the “Federazione Italiana di Scienze della Terra” (F.I.S.T) – Rimini (Italy), 12-14. September 2007.Google Scholar
Gatta, G.D., Rinaldi, R., Knight, K., Molin, G. and Artioli, G. (2007b) High temperature structural and thermoelastic behaviour of mantle orthopyroxene: an in situ neutron powder diffraction study. Physics and Chemistry of Minerals 34, 185-200.CrossRefGoogle Scholar
Hawthorne, F.C., Ungaretti, L. and Oberti, R. (1995) Site populations in minerals; terminology and presentation of results of crystal-structure refinement. The Canadian Mineralogist 33, 907-911.Google Scholar
Howell, D., Wood, I.G., Dobson, D.P., Jones, A.P., Nasdala, L. and Harris, J.W. (2010) Quantifying strain birefringence halos around inclusions in diamond. Contributions to Mineralogy and Petrology 160, 705-717.CrossRefGoogle Scholar
Howell, D., Wood, I.G., Nestola, F., Nimis, P. and Nasdala, L. (2012) Inclusions under remnant pressure in diamond: a multi-technique approach. European Journal of Mineralogy 24, 563-573.CrossRefGoogle Scholar
Hugh-Jones, D. (1997) Thermal expansion of MgSiO3 and FeSiO3 ortho- and clinopyroxenes. American Mineralogist 82, 689-696.CrossRefGoogle Scholar
Ibers, J. and Hamilton, W. (1970) International Tables for X-ray Crystallography. Kynoch Press, Birmingham, UK [pp. 99–101.Google Scholar
Kanzaki, M. (1991) Stability of hydrous magnesium silicates in the mantle transition zone. Physics of the Earth and Planetary Interiors 66, 307-312.CrossRefGoogle Scholar
Kustowski, B., Ekström, G. and Dziewon´ ski, A. (2008) Anisotropic shear–wave velocity structure of the Earth’s mantle: a global model. Journal of Geophysical Research: Solid Earth (1978–2012. , DOI: 10.1029/2007JB005169.CrossRefGoogle Scholar
Milani, S., Nestola, F., Alvaro, M., Pasqual, D., Mazzucchelli, M.L., Domeneghetti, M.C. and Geiger, C.A. (2015) Diamond-garnet barometry: The role of garnet compressibility and expansivity. Lithos, DOI: 10.1016/j.lithos.2015.03.017.CrossRefGoogle Scholar
Miyake, A., Shimobayashi, N. and Kitamura, M. (2004) Isosymmetric structural phase transition of orthoenstatite: Molecular dynamics simulation. American Mineralogist 89, 1667-1672.CrossRefGoogle Scholar
Nestola, F. (2015) The crucial role of crystallography in diamond research. Rendiconti Lincei, DOI: 10.1007/ s12210-015-0398-1.CrossRefGoogle Scholar
Nestola, F., Gatta, G.D. and Ballaran, T.B. (2006) The effect of Ca substitution on the elastic and structural behavior of orthoenstatite. American Mineralogist 91, 809-815.CrossRefGoogle Scholar
Nestola, F., Nimis, P., Ziberna, L., Longo, M., Marzoli, A., Harris, J.W., Manghnani, M.H. and Fedortchouk, Y. (2011) First crystal-structure determination of olivine in diamond: Composition and implications for provenance in the Earth’s mantle. Earth and Planetary Science Letters 305, 249-255.CrossRefGoogle Scholar
Pacalo, R. and Gasparik, T. (1990) Reversals of the orthoenstatite–clinoenstatite transition at high pressures and high temperatures. Journal of Geophysical Research: Solid Earth (1978–2012). 95, 15853-15858.CrossRefGoogle Scholar
Pandolfo, F., Cámara, F., Domeneghetti, M.C., Alvaro, M., Nestola, F., Karato, S.-I. and Amulele, G. (2015) Volume thermal expansion along the jadeite-diopside join. Physics and Chemistry of Minerals 42, 1-14.CrossRefGoogle Scholar
Panning, M. and Romanowicz, B. (2006) A threedimensional radially anisotropic model of shear velocity in the whole mantle. Geophysical Journal International 167, 361-379.CrossRefGoogle Scholar
Perrillat, J.-P., Nestola, F., Sinogeikin, S.V. and Bass, J.D. (2007) Single-crystal elastic properties of Ca0.07Mg1.93Si2O6 orthopyroxene. American Mineralogist 92, 109-113.CrossRefGoogle Scholar
Petersen, E.U., Anovitz, L.M. and Essene, E.J. (1984) Donpeacorite, (Mn,Mg)MgSi2O6, a new orthopyroxene and its proposed phase relations in the system MnSiO3–MgSiO3–FeSiO3 . American Mineralogist 69, 472-480.Google Scholar
Ringwood, A.E. (1975) Composition and Petrology of the Earth’s Mantle. McGraw-Hill, New York.Google Scholar
Saxena, S.K., Domeneghetti, M.C., Molin, G.M. and Tazzoli, V. (1989) X-ray diffraction study of Fe2+- Mg order-disorder in orthopyroxene. Some kinetic results. Physics and Chemistry of Minerals 16, 421-427.CrossRefGoogle Scholar
Sheldrick, G.M. (1996) SADABS. University of Göttingen, Germany.Google Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica Section A 64, 112-122.Google Scholar
Smyth, J. (1973) Orthopyroxene structure up to 850ºC. American Mineralogist 58, 636-648.Google Scholar
Stimpfl, M. (2005) The Mn, Mg-intracrystalline exchange reaction in donpeacorite (Mn0.54Ca0.03 Mg1.43Si2O6) and its relation to the fractionation behavior of Mn in Fe,Mg-orthopyroxene. American Mineralogist 90, 155-161.CrossRefGoogle Scholar
Stimpfl, M., Ganguly, J. and Molin, G. (1999) Fe2+-Mg order-disorder in orthopyroxene: equilibrium fractionation between the octahedral sites and thermodynamic analysis. Contributions to Mineralogy and Petrology 136, 297-309.CrossRefGoogle Scholar
Sueno, S., Cameron, M. and Prewitt, C. (1976) Orthoferrosilite: high-temperature crystal chemistry. American Mineralogist 61, 38-53.Google Scholar
Tarantino, S.C., Domeneghetti, M.C., Carpenter, M.A., Shaw, C.J.S. and Tazzoli, V. (2002) Mixing properties of the enstatite-ferrosilite solid solution: I. a macroscopic perspective. European Journal of Mineralogy 14, 525.CrossRefGoogle Scholar
Yang, H. and Ghose, S. (1994) Thermal expansion, Debye temperature and Grüneisen parameter of synthetic (Fe,Mg)SiO3 orthopyroxenes. Physics and Chemistry of Minerals 20, 575-586.CrossRefGoogle Scholar
Supplementary material: File

Scandolo et al. supplementary material

Electronic Tables 4 and 5

Download Scandolo et al. supplementary material(File)
File 435.7 KB