Skip to main content Accessibility help
×
Home

Substitution mechanisms in In-, Au-, and Cu-bearing sphalerites studied by X-ray absorption spectroscopy of synthetic compounds and natural minerals

  • Olga N. Filimonova (a1), Alexander L. Trigub (a1) (a2), Dmitriy E. Tonkacheev (a1), Max S. Nickolsky (a1) (a3), Kristina O. Kvashnina (a4) (a5), Dmitriy A. Chareev (a6) (a7) (a8), Ilya V. Chaplygin (a1), Elena V. Kovalchuk (a1), Sara Lafuerza (a4) and Boris R. Tagirov (a1)...

Abstract

Sphalerite is the main source of In – a ‘critical’ metal widely used in high-tech electronics. In this mineral the concentration of In is commonly correlated directly with Cu content. Here we use X-ray absorption spectroscopy of synthetic compounds and natural crystals in order to investigate the substitution mechanisms in sphalerites where In is present, together with the group 11 metals. All the admixtures (Au, Cu, In) are distributed homogeneously within the sphalerite matrix, but their structural and chemical states are different. In all the samples investigated In3+ replaces Zn in the structure of sphalerite. The In ligand distance increases by 0.12 Å and 0.09–0.10 Å for the 1st and 2nd coordination shells, respectively, in comparison with pure sphalerite. The In–S distance in the 3rd coordination shell is close to the one of pure sphalerite. Gold in synthetic sphalerites is coordinated with sulfur (NS = 2.4–2.5, RAu–S = 2.35 ± 0.01 Å). Our data suggest that at high Au concentrations (0.03–0.5 wt.%) the Au2S clusters predominate, with a small admixture of the Au+ solid solution with an Au–S distance of 2.5 Å. Therefore, the homogeneous character of a trace-element distribution, which is commonly observed in natural sulfides, does not confirm formation of a solid solution. In contrast to Au, the presence of Cu+ with In exists only in the solid-solution state, where it is tetrahedrally coordinated with S atoms at a distance of 2.30 ± 0.03 Å. The distant coordination shells of Cu are disordered. These results demonstrate that the group 11 metals (Cu, Ag and Au) can exist in sphalerite in the metastable solid-solution state. The solid solution forms at high temperature via the charge compensation scheme 2Zn2+Me++Me3+. The final state of the trace elements at ambient temperature is governed by the difference in ionic radii with the main component (Zn), and concentration of admixtures.

Copyright

Corresponding author

*Author for correspondence: Boris R. Tagirov, Email: boris1t@yandex.ru

Footnotes

Hide All

Associate Editor: G. Diego Gatta

Footnotes

References

Hide All
Apple, E.F. and Williams, F.E. (1959) Associated donor-acceptor luminescent centers in zinc sulfide phosphors. Journal of the Electrochemical Society, 106, 224230.
Bader, R.F.W. (1990) Atoms in Molecules: a Quantum Theory. Oxford University Press, Oxford, U.K.
Bader, R.F.W. (1991) A quantum theory of molecular structure and its applications. Chemical Reviews, 91, 893928.
Belissont, R., Muñoz, M., Boiron, M.-C., Luais, B. and Mathon, O. (2016) Distribution and oxidation state of Ge, Cu and Fe in sphalerite by μ-XRF and K-edge μ-XANES: insights into Ge incorporation, partitioning and isotopic fractionation. Geochimica et Cosmochimica Acta, 177, 298314.
Blöhl, P.E. (1992) Projector augmented-wave method. Physical Review B, 50, 1795317979.
Bonnet, J., Cauzid, J., Testemale, D., Kieffer, I., Proux, O., Lecomte, A. and Bailly, L. (2017) Characterization of germanium speciation in sphalerite (ZnS) from Central and Eastern Tennessee, USA, by X-ray absorption spectroscopy. Minerals, 7, 79.
Bortnikov, N.S., Cabri, L.J., Vikentiev, I.V., Tagirov, B.R., Mc Mahon, G., Bogdanov, Yu.A. and Stavrova, O.O. (2003) Invisible gold in sulfides from seafloor massive sulfide edifices. Geology of Ore Deposits, 45, 201212.
Burke, E.A.J. and Kieft, C. (1980) Roquesite and Cu–In-bearing sphalerite from Långban, Bergslagen, Sweden. The Canadian Mineralogist, 18, 361363.
Chaplygin, I.V., Mozgova, N.N., Mokhov, A.V., Koporulina, E.V., Bernardt, H.-J. and Bryzgalov, I.A. (2007) Minerals of the system ZnS-CdS from fumaroles of the Kudriavy volcano, Iturup island, Kuriles, Russia. The Canadian Mineralogist, 45, 709722.
Chareev, D.A. (2016) General principles of the synthesis of chalcogenides and pnictides in salt melts using a steady-state temperature gradient. Crystallography Reports, 61, 506511.
Chareev, D.A., Volkova, O.S., Geringer, N.V., Koshelev, A.V., Nekrasov, A.N., Osadchii, V.O., Osadchii, E.G. and Filimonova, O.N. (2016) Synthesis of chalcogenide and pnictide crystals in salt melts using a steady-state temperature gradient. Crystallography Reports, 61, 682691.
Chareev, D.A., Osadchii, V.O., Shiryaev, A.A., Nekrasov, A.N., Koshelev, A.V. and Osadchii, E.G. (2017) Single-crystal Fe-bearing sphalerite: synthesis, lattice parameter, thermal expansion coefficient and microhardness. Physics and Chemistry of Minerals, 44, 287296.
Chernyshov, A.A., Veligzhanin, A.A. and Zubavichus, Y.V. (2009) Structural materials science end-station at the Kurchatov Synchrotron Radiation Source: Recent instrumentation upgrades and experimental results. Nuclear Instruments and Methods in Physics Research A, 603, 9598.
Cook, N.J., Ciobanu, C.L., Pring, A., Skinner, W., Shimizu, M., Danyushevsky, L. and Melcher, F. (2009) Trace and minor elements in sphalerite: A LA-ICPMS study. Geochimica et Cosmochimica Acta, 73, 47614791.
Cook, N.J., Ciobanu, C.L., Brugger, J., Etschmann, B., Howard, D.L., de Jonge, M.D., Ryan, C. and Paterson, D. (2012) Determination of the oxidation state of Cu in substituted Cu–In-Fe-bearing sphalerite via m-XANES spectroscopy. American Mineralogist, 97, 476479.
Cook, N.J., Etschmann, B., Ciobanu, C.L., Geraki, K., Howard, D.L., Williams, T., Rae, N., Pring, A., Chen, G., Johannessen, B. and Brugger, J. (2015) Distribution and substitution mechanism of Ge in a Ge-(Fe)-bearing sphalerite. Minerals, 5, 117132.
Corrado, C., Jiang, Yu., Oba, F., Kozina, M., Bridges, F. and Zhang, J.Z. (2009) Synthesis, structural, and optical properties of stable ZnS:Cu,Cl nanocrystals. Journal of Physical Chemistry A, 113, 38303839.
Fieber-Erdmann, M., Rossner, H., Holub-Krappe, E., Eyert, V. and Luck, I. (1999) Structural properties of Zn2–2x(CuIn)xS2 (X ≤ 1) solid solution thin film obtained by EXAFS. Journal of Synchrotron Radiation, 6, 474476.
Fletcher, R. (1987) Practical Methods of Optimization (2nd ed.). John Wiley & Sons, New York.
Galoisy, L. (2004) X-ray absorption spectroscopy in geosciences: Information from the EXAFS region. Pp. 553587 in: Spectroscopic Methods in Mineralogy (Beran, A. and Libowitzky, E., editors). EMU Notes in Mineralogy, Vol. 6.
Gauthier, C., Sole, V.A., Signorato, R., Goulon, J. and Moguiline, E. (1999) The ESRF beamline ID26: X-ray absorption on ultra dilute sample. Journal of Synchrotron Radiation, 6, 164166.
Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Corso, A.D., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A.P., Smogunov, A., Umari, P. and Wentzcovitch, R.M. (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter, 21, 395502.
Glatzel, P. and Bergman, U. (2005) High resolution 1s core hole X-ray spectroscopy in 3d transition metal complexes - electronic and structural information. Coordination Chemistry Reviews, 249, 6595.
Glatzel, P., Weng, T.-C., Kvashnina, K., Swarbrick, J., Sikora, M., Gallo, E., Smolentsev, N. and Mori, R.A. (2013) Reflections on hard X-ray photon-in/photon-out spectroscopy for electronic structure studies. Journal of Electron Spectroscopy and Related Phenomena, 188, 1725.
Herzig, P.M., Hannington, M.D., Fouquet, Y., von Stackelberg, U. and Petersen, S. (1993) Gold-rich polymetallic sulfides from the Lau back arc and implications for the geochemistry of gold in sea-floor hydrothermal systems of the Southwest Pacific. Economic Geology, 88, 21822209.
Ishikawa, K., Isonga, T., Wakita, S. and Suzuki, Y. (1995) Structure and electrical properties of Au2S. Solid State Ionics, 79, 6066.
Iwanowski, R.J. and Ławniczak-Jabłońska, K. (1996) EXAFS studies of local atomic structure in Zn1–xMnxS. Solid State Communications, 97, 879885.
Iwanowski, R.J. and Ławniczak-Jabłońska, K. (1997) EXAFS determination of bond lengths in Zn1–xFexS ternary alloys. Acta Physica Polonica A, 91, 797801.
Iwanowski, R.J., Ławniczak-Jabłońska, K., Gołacki, Z. and Traverse, A. (1998) Tetrahedral covalent radii of Mn, Fe, Co and Ni estimated from extended X-ray absorption fine structure studies. Chemical Physics Letters, 283, 313318.
Jamieson, J.C. and Demarest, H.H. Jr. (1980) A note on the compression of cubic ZnS. Journal of Physics and Chemistry of Solids, 41, 963964.
Johan, Z. (1988) Indium and germanium in the structure of sphalerite: an example of coupled substitution with copper. Mineralogy and Petrology, 39, 211229.
Koelmans, H. (1960) Association and dissociation of centres in luminescent ZnS-In. Journal of Physics and Chemistry of Solids, 17, 6979.
Kresse, G. (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59, 17581775.
Kvashnina, K.O. and Scheinost, A.C. (2016) A Johann-type X-ray emission spectrometer at the Rossendirf Beamline. Journal of Synchrotron Radiation, 23, 836841.
Ławniczak-Jabłońska, K. and Gołacki, Z. (1994) Extended X-ray absorption fine structure studies of Co doped ZnS and ZnSe alloys. Acta Physica Polonica A, 86, 727735.
Ławniczak-Jabłońska, K., Iwanowski, R.J., Gołacki, Z., Traverse, A., Pizzini, S. and Fontaine, A. (1995) Correlation between XANES of the transition metals in ZnS and ZnSe and their limit of solubility. Physica B, 208–209, 497499.
Ławniczak-Jabłońska, K., Iwanowski, R.J., Gołacki, Z., Traverse, A., Pizzini, S., Fontaine, A. and Winter, I. (1996) Local electronic structure of ZnS and ZnSe doped by Mn, Fe, Co, and Ni from X-ray-absorption near-edge structure studies. Physical Review B, 53, 11191128.
Melekestseva, I.Yu., Maslennikov, V.V., Tret'yakov, G.A., Nimis, P., Beltenev, V.E., Rozhdestvenskaya, I.I., Maslennikova, S.P., Belogub, E.V., Danyushevsky, L., Large, R., Yuminov, A.M. and Sadykov, S.A. (2017) Gold- and silver-rich massive sulfides from the Semenov-2 hydrothermal field, 13°31.13′N, Mid-Atlantic Ridge: a case of magmatic contribution? Economic Geology, 112, 741773.
Mercer, C.N. (2015) Indium: Bringing Liquid-Crystal Displays into Focus. USGS Report, Fact Sheet 2015–3012, Reston, Virginia, USA.
Mercier-Langevin, P., Hannington, M.D., Dubé, B. and Bécu, V. (2011) The gold content of volcanogenic massive sulfide deposits. Mineralium Deposita, 46, 509539.
Mottana, A. (2004) X-ray absorption spectroscopy in mineralogy: Theory and experiment in the XANES region. Pp. 465552 in: Spectroscopic Methods in Mineralogy (Beran, A. and Libowitzky, E., editors). EMU Notes in Mineralogy, Vol. 6.
Norris, D.J., Efros, A.L. and Erwin, S.C. (2008) Doped nanocrystals. Nature, 319, 17761779.
Otero-de-la-Roza, A., Blanco, M.A., Martín Pendás, A. and Luaña, V. (2009) Critic: a new program for the topological analysis of solid-state electron densities. Computer Physics Comunications, 180, 157166.
Otero-de-la-Roza, A., Johnson, E.R. and Luaña, V. (2014) Critic2: A program for real-space analysis of quantum chemical interactions in solids. Physics Comunications 185, 10071018.
Pattrick, R.A.D, Mosselmans, J.F.W. and Charnock, J.M. (1998) An X-ray absorption study of doped sphalerites. European Journal of Mineralogy, 10, 239249.
Ravel, B. and Newville, M. (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. Journal of Synchrotron Radiation, 12, 537541.
Schnohr, C.S. (2015) Compound semiconductor alloys: From atomic-scale structure to bandgap bowing. Applied Physics Reviews, 2, 031304.
Schorr, S. and Wagner, G. (2005) Structure and phase relations of the Zn2x(CuIn)1–xS2 solid solution series. Journal of Alloys and Compounds, 396, 202207.
Schorr, S., Tovar, M., Stuesser, N., Sheptyakov, D. and Geandier, G. (2006) Where the atoms are: Cation disorder and anion displacement in DIIXVI–AIBIIIX2VI semiconductors. Physica B, 385–386, 571573.
Schwarz-Schampera, U. (2014) Indium. Pp. 204229 in: Critical Metals Handbook (Gunn, G., editor). Wiley, UK.
Self, P.G., Norrish, K. and Milnes, A.R. (1990) Holes in the background in XRS. X-Ray Spectrometry, 19, 5961.
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica A, 32, 751767.
Tagirov, B.R., Baranova, N.N., Zotov, A.V., Schott, J. and Bannykh, L.N. (2006) Experimental determination of the stabilities of Au2S(cr) at 25°С and Au(HS)2 at 25–250°С. Geochimica et Cosmochimica Acta, 70, 36893701.
Tagirov, B.R., Trigub, A.L., Kvashnina, K.O., Shiryaev, A.A., Chareev, D.A., Nickolsky, M.S., Abramova, V.D. and Kovalchuk, E.V. (2016) Covellite CuS as a matrix for “invisible” gold: X-ray spectroscopic study of the chemical state of Cu and Au in synthetic minerals. Geochimica et Cosmochimica Acta, 191, 5869.
Tofanelli, M.A., Ackerson, C.J. (2012) Superatom electron configuration predicts thermal stability of Au25(SR)18 nanoclusters. Journal of the American Chemical Society, 134, 1693716940.
Tolcin, A.C. (2017) Indium. US Geological Survey, Mineral Commodity Summaries, 80–81.
Tonkacheev, D.E., Chareev, D.A., Abramova, V.D., Yudovskaya, M.A., Minervina, E.A. and Tagirov, B.R. (2015) Sphalerite as a matrix for noble, non-ferrous metals and semimetals: A EPMA and LA-ICP-MS study of synthetic crystals. Pp. 847–850 in: Proceedings of the 13th Biennial SGA Meeting, 24–27 August 2015, Nancy, France, vol. 2.
Trigub, A.L., Tagirov, B.R., Kvashnina, K.O., Chareev, D.A., Nickolsky, M.S., Shiryaev, A.A., Baranova, N.N., Kovalchuk, E.V. and Mokhov, A.V. (2017) X-ray spectroscopy study of the chemical state of “invisible” Au in synthetic minerals in the Fe-As-S system. American Mineralogist, 102, 10571065.
Vikentyev, I.V. (2015) Invisible and microscopic gold in pyrite: methods and new data for sulfide ores of the Urals. Geology of Ore Deposits, 57, 237265.
Vikentyev, I.V., Yudovskaya, M.A., Mokhov, A.V., Kerzin, A.L. and Tsepin, A.I. (2004) Gold and PGE in massive sulfide ore of the Uzelginsk deposit, Southern Urals, Russia. The Canadian Mineralogist, 42, 651665.
Warkentin, M., Bridges, F., Carter, S.A. and Anderson, M. (2007) Electroluminescence materials ZnS:Cu,Cl and ZnS:Cu,Mn,Cl studied by EXAFS spectroscopy. Physical Review B, 75, 075301.
Wilson, S.A., Ridley, W.I. and Koenig, A.E. (2002) Development of sulfide calibration standards for the laser ablation inductively-coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 17, 406409.
Yen, W.M. and Weber, M.J. (2004) Inorganic Phosphors: Compositions, Preparation and Optical Properties. CRC Press, Florida, USA.
Zabinsky, S.I., Rehr, J.J., Ankudinov, A., Albers, R.C. and Eller, M.J. (1995) Multiple-scattering calculations of X-ray-absorption spectra. Physical Review B, 52, 2995.

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Filimonova et al. supplementary material
Filimonova et al. supplementary material 1

 Unknown (722 KB)
722 KB

Substitution mechanisms in In-, Au-, and Cu-bearing sphalerites studied by X-ray absorption spectroscopy of synthetic compounds and natural minerals

  • Olga N. Filimonova (a1), Alexander L. Trigub (a1) (a2), Dmitriy E. Tonkacheev (a1), Max S. Nickolsky (a1) (a3), Kristina O. Kvashnina (a4) (a5), Dmitriy A. Chareev (a6) (a7) (a8), Ilya V. Chaplygin (a1), Elena V. Kovalchuk (a1), Sara Lafuerza (a4) and Boris R. Tagirov (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed