Skip to main content Accessibility help
×
Home

The structure of charoite, (K,Sr,Ba,Mn)15–16(Ca,Na)32[(Si70(O,OH)180)](OH,F)4.0.nH2O, solved by conventional and automated electron diffraction

  • I. Rozhdestvenskaya (a1) (a2), E. Mugnaioli (a3), M. Czank (a2), W. Depmeier (a2), U. Kolb (a3), A. Reinholdt (a4) and T. Weirich (a4)...

Abstract

Charoite, ideally (K,Sr,Ba,Mn)15–16(Ca,Na)32[(Si70(O,OH)180)](OH,F)4.0·nH2O, a rare mineral from the Murun massif in Yakutiya, Russia, was studied using high-resolution transmission electron microscopy, selected-area electron diffraction, X-ray spectroscopy, precession electron diffraction and the newly developed technique of automated electron-diffraction tomography. The structure of charoite (a = 31.96(6) Å, b = 19.64(4) Å, c = 7.09(1) Å, β = 90.0(1)°, V = 4450(24) Å3, space group P21/m) was solved ab initio by direct methods from 2878 unique observed reflections and refined to R 1/wR 2 = 0.17/0.21. The structure can be visualized as being composed of three different dreier silicate chains: a double dreier chain, [Si6O17]10–; a tubular loop-branched dreier triple chain, [Si12O30]12–; and a tubular hybrid dreier quadruple chain, [Si17O43]18–. The silicate chains occur between ribbons of edge-sharing Ca and Na-octahedra. The chains of tetrahedra and the ribbons of octahedra extend parallel to the z axis. K+, Ba2+, Sr2+, Mn2+ and H2O molecules lie inside tubes and channels of the structure. On the basis of microprobe analyses and occupancy refinement of the cation sites, the crystal chemical formula of this charoite can be written as (Z = 1): (K13.88Sr1.0Ba0.32Mn0.36)Σ15.56(Ca25.64Na6.36)Σ32 [(Si6O11(O,OH)6)2(Si12O18(O,OH)12)2(Si17O25(O,OH)18)2](OH,F)4.0·3.18H2O.

Copyright

Corresponding author

References

Hide All
Akselrud, L.G., Grin, Yu.N., Zavalii, P.Yu., Pecharsky, V.K. and Fundamensky, V.S. (1989) CSD – the programs for determination and refinement crystal structures. Collected Abstracts X11 European Crystallography meeting, Moscow, 3, 155.
Avilov, A., Kuligin, K., Nicolopoulos, S., Nickolskiy, M., Boulahya, K., Portillo, J., Lepeshov, G., Sobolev, B., Collette, J.P., Martin, N., Robins, A.C. and Fischione, P. (2007) Precession technique and electron diffractometry as new tools for crystal structure analysis and chemical bonding determination. Ultramicroscopy, 107, 431444.
Burla, M.C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G.L., De Caro, L., Giacovazzo, C., Polidori, G., Diligi, S. and Spagna, R. (2007) IL MILIONE: a suite of computer programs for crystal structure solution of proteins. Journal of Applied Crystallography, 40, 609613.
Chiragov, M.I. and Shirinova, A.F. (2004) Crystal structure of charoite; relations to structures of miserite, canasite and okenite. Mineralogicheskiy Zhurnal, 26(4), 59. (in Russian).
Czank, M. and Bissert, G. (1993) The crystal structure of Li2Mg2[Si4O11], a loop-branched dreier single chain silicate. Zeitschrift für Kristallographie, 204, 129142.
Evdokimov, M.D., Bulach, À.G. and Borisov, À.B. (1995) Morphogenetic types of charoite and their jeweller's qualities. Mineralogicheskiy Zhurnal, 7(5), 2431. (in Russian).
Evdokimov, M.D., Rodishevskii, D.V. and Fadeeva, I.K. (2000) About the tints of charoite colourings. Abstracts of Meeting “Mineralogical Museums”, St.Petersburg, 4243. (in Russian).
Frank-Kamenetskaya, O.V. and Rozhdestvenskaya, I.V. (2004) Atomic defects and crystal structure of minerals. St.Petersburg, Yanus, Crystal Chemistry, 33, 187 pp.
Heil, U., Schlitt, S. and Schömer, E. (2009) ADT-3D – a software package for ADT data visualizing and processing, which improves and extends existing Matlab applications especially about 3D algorithms. Institute of Computer Science, Johannes Gutenberg-University of Mainz, Germany.
Kolb, U., Gorelik, T., Kübel, C., Otten, M.T. and Hubert, D. (2007) Towards automated diffraction tomography: Part I – Data acquisition. Ultramicroscopy, 107, 507513.
Kolb, U., Gorelik, T. and Otten, M.T. (2008) Towards automated diffraction tomography. Part II - Cell parameter determination. Ultramicroscopy, 108, 763772.
Konev, A.A., Vorob'ev, E.I. and Lazebnik, K.A. (1996) Mineralogy of Murunskii Alkaline Massif. Nauchno- Izdatelsky Tsentr Ob'edinennogo Instituta Geologii, Geofiziki, Mineralogii, Siberian Branch of Russian Academy of Science, Novosibirsk, Russia, 221 pp. (in Russian).
Liebau, F. (1985) Structural Chemistry of Silicates. Springer-Verlag, Berlin, Heidelberg, 412 pp.
Mugnaioli, E., Gorelik, T. and Kolb, U. (2009) ‘Ab initio’ structure solution from electron diffraction data obtained by a combination of Automated Diffraction Tomography and Precession Technique. Ultramicroscopy, 109, 758765.
NanoMEGAS (2004) Advanced Tools for Electron Diffraction. Available at <http://www.nanomegas.com>.
Nikishova, L.V., Lazebnik, K.A. and Lazebnik, Yu.D. (1985) About crystallochemical formulae of charoite. Pp. 100105 in: Crystal Chemistry and Structure of Minerals. Nauka, Leningrad, Russia. (in Russian).
Own, C.S. (2005) System design and verification of the precession electron diffraction technique. Ph.D. thesis, Northwestern University, Evanston, Illinois, USA. Available at <http://www.numis.northwestern.edu/Research/Current/precession>.
Rogova, V.P., Rogov, Yu.P., Drits, V.A. and Kuznetsova, N.N. (1978) Charoite – anew mineral and a new jewelry stone. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 107, 94100. (in Russian).
Rozhdestvenskaya, I.V. and Nikishova, L.V. (2002) Characteristics of Alkali Calcium Silicates from Charoitites. Crystallography Reports, 47, 545554.
Rozhdestvenskaya, I.V., Kogure, T. and Drits, V.A. (2007) Structural model of charoite. Abstracts of Meeting “Crystal chemistry and X-ray diffraction of Minerals”. Miass, Russia, 4849.
Rozhdestvenskaya, I.V., Kogure, T. and Drits, V.A. (2009 a) Structural model of charoite. Mineralogical Magazine, 73, 883890.
Rozhdestvenskaya, I., Kolb, U., Mugnaioli, E., Reinholdt, A., Weirich, T., Depmeier, W. and Czank, M. (2009 b) Some news about charoite. Zeitschrift für Kristallographie, Supplement Issue, 29, 103.
Sheldrick, G.M. (1997) SHELXL97. Program for the Refinement of Crystals Structures. University of Göttingen, Göttingen, Germany.
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica A, 64, 112122.
Vincent, R. and Midgley, P.A. (1994) Double conical beam-rocking system for measurement of integrated electron diffraction intensities. Ultramicroscopy, 53, 271282.
Vorob'ev, E.I. (2008) Charoite (Zorina, L.D., editor). Academy Publishing ‘Geo’, Novosibirsk, Russia, 140 pp. (in Russian).

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Rozhdestvenskaya et al. supplementary material
Anisotropic displacement factors

 Unknown (6 KB)
6 KB
UNKNOWN
Supplementary materials

Rozhdestvenskaya et al. supplementary material
Structure factor data

 Unknown (121 KB)
121 KB

The structure of charoite, (K,Sr,Ba,Mn)15–16(Ca,Na)32[(Si70(O,OH)180)](OH,F)4.0.nH2O, solved by conventional and automated electron diffraction

  • I. Rozhdestvenskaya (a1) (a2), E. Mugnaioli (a3), M. Czank (a2), W. Depmeier (a2), U. Kolb (a3), A. Reinholdt (a4) and T. Weirich (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed