Skip to main content Accessibility help

Structural characterization and chemical composition of aragonite and vaterite in freshwater cultured pearls

  • A. L. Soldati (a1), D. E. Jacob (a1), U. Wehrmeister (a2) and W. Hofmeister (a2)


Vaterite and aragonite polymorphs in freshwater cultured pearls from mussels of the genus Hyriopsis (Unionidae) were structurally and compositionally characterized by Raman spectroscopy, Micro computer tomography, high resolution field emission scanning electron microscopy, electron microprobe analysis and laser ablation inductively coupled plasma mass spectrometry. The appearance of vaterite in pearls is related to the initial stages of biomineralization, although we demonstrate that vaterite can not be a precursor to aragonite. It is not related to a particular crystal habit and therefore does not have a structural functionality in the pearls. Larger contents of elements typically bound to organic molecules, such as P and S in vaterite, as well as larger total organic contents in vaterite as opposed to aragonite in conjunction with larger concentrations of Mn2+ and Mg2+, imply a stabilizing role of organic macromolecules and X 2+ ions for biological vaterite. Distribution coefficients between aragonite and vaterite for provenance-independent elements, such as Mn and Mg (0.27 and 0.04, respectively) agree very well with those observed in fish otoliths.


Corresponding author


Hide All
Addadi, L. and Werner, S. (1997) Biomineralization: A pavement of pearl. Nature, 389, 912914.
Addadi, L., Joester, D., Nudelman, F. and Weiner, S. (2006) Mullusk shell formation: A source of new concepts for understanding biomineralization processes. Chemistry — A European Journal, 12, 980987.
Akamatsu, S., Zansheng, I.T., Moses, T.M. and Scaratt, K. (2001) The current status of Chinese cultured pearls. Gems and Gemology, 37, 96113.
Barnard, W. and de Waal, D. (2006) Raman investigation of pigmentary molecules in the molluscan biogenic matrix. Journal of Raman Spectroscopy, 37, 342352.
Bevelander, G. and Nakahara, H. (1969) An electron microscope study of the formation of the nacreous layer in the shell of certain bivalve molluscs. Calcified Tissue Research, 3, 8492.
Blank, S., Arnoldi, M., Khoshnavaz, S., Treccani, L., Kuntz, M., Mann, K., Grathwohl, G. and Fritz, M. (2003) The nacre protein perlucin nucleates growth of calcium carbonate crystals. Journal of Microscopy, 212, 280291.
Cornells, R., Caruso, J., Crews, H. and Heumann, K. (2005) Handbook of Elemental Speciation II — Species in the Environment, Food, Medicine and Occupational Health. John Wiley & Sons, Chichester, 784 pp.
de Villiers, J.P.R. (1971) Crystal structures of aragonite, strontianite, and witherite. American Mineralogist, 36, 758767.
Erben, H. and Watabe, N. (1974) Crystal formation and growth in bivalve nacre. Nature, 248, 128130.
Falini, G., Fermani, S., Gazzano, M. and Ripamonti, A. (2000) Polymorphism and architectural crystal assembly of calcium carbonate in biologically inspired polymeric matrices. Dalton Transactions, 2000, 39833987.
Falini, G., Fermani, S., Vanzo, S., Miletic, M. and Zaffmo, G. (2005) Influence on the formation of aragonite or vaterite by otolith macromolecules. European Journal of Inorganic Chemistry, 2005, 162167.
Gauldie, R.W. (1993) Polymorphic crystalline structure of fish otoliths. Journal of Morphology, 218, 1 —28.
Gauldie, R.W., Sharma, S.K. and Volk, E. (1997) Micro-Raman spectral study of vaterite and aragonite otoliths of the coho salmon, Oncorhynchus kisutch. Comparative Biochemistry and Physiology, A118, 753757.
Habermann, D., Banerjee, A., Meijer, J. and Stephan, A. (2001) Investigation of Mn in salt and freshwater pearls. Nuclear Instruments and Methods in Physics Research, B181, 739743.
Hasse, B., Ehrenberg, H., Marxen, J.C., Becker, W. and Epple, M. (2006) Calcium carbonate modifications in the mineralized shell of freshwater snail Biomphalaria glabrata. Chemical European Journal, 6, 36793685.
Hou, W. and Feng, Q. (2006) Morphology and formation mechanism of vaterite particles grown in glycine-containing aqueous solutions. Materials Science and Engineering, C26, 644647.
Jacob, D.E., Wehrmeister, U., Hager, T. and Hofmeister, W. (2006) Identifying Japanese freshwater cultured pearls from lake Kasumigaura. Australian Gemmologist, 22, 539541.
Kamhi, S. (1963) On the structure of vaterite, CaCO3 . Ada Crystallographica, 16, 770772.
Karampelas, S., Fritsch, E., Sklavounos, S. and Soldatos, T. (2007) Determination by Raman scattering of the nature of pigments in cultured freshwater pearls from the mollusk Hyriopsis cumingi. Journal of Raman Spectroscopy, 38, 217230.
Landman, N.H., Mikkelsen, P.M., Bieler, R. and Bronson, B. (2001) Pearls. A Natural History. Harry N. Abrams, Inc., New York.
Levi-Kalisman, Y., Falini, G., Addadi, L. and Weiner, S. (2001) Structure of the nacreous organic matrix of a bivalve mollusk shell examined in the hydrated state using cryo-TEM. Journal of Structural Biology, 135, 817.
Li, X. (2007) Nanoscale structural and mechanical characterization of natural nanocomposites: Seashells. Journal of the Minerals, Metals and Materials Society, 59, 7174.
Lippmann, F. (1973) Sedimentary Carbonate Minerals. Springer Verlag, New York.
Loges, N., Graf, K., Nasdala, L. and Tremel, W. (2006) Probing cooperative interactions of tailor-made nucleation surfaces and macromolecules: A bioin-spired route to hollow micrometer-sized calcium carbonate particles. Langmuir, 22, 30733080.
Lowenstam, H.A. and Abbott, D.P. (1975) Vaterite: A mineralization product of the hard tissues of a marine organism (Ascidiacea). Science, 188, 363365.
Ma, H.Y. and Lee, I.S. (2006) Characterization of vaterite in low quality freshwater-cultured pearls. Materials Science and Engineering, C26, 721723.
Melancon, S., Fryer, B.J., Ludsin, S.A., Gagnon, J.E. and Yang, Z. (2005) Effects of crystal structure on the uptake of metals by lake trout (Salvelinus namaycush) otoliths. Canadian Journal of Fisheries and Aquatic Sciences, 62, 26092619.
Meyer, H.J. (1960) Uber Vaterit und seine Struktur. Fortschritte der Mineralogie, 38, 186187.
Meyer, H.J. (1969) Struktur und Fehlordnung des Vaterits. Zeitschrift fur Kristallographie, 128, 183212.
Nassrallah-Aboukais, N., Boughriet, A., Gengembre, L. and Aboukais, A. (1998) Manganese (Il)-vaterite-water systems: spectroscopic and thermodynamic study. Journal of the Chemical Society, Faraday Transactions, 94, 23992405.
Oliveira, A.M. and Farina, M. (1996) Vaterite, calcite and aragonite in the otoliths of three species of piranha. Naturwissenshaften, 83, 133135.
Plummer, L.N. and Busenberg, E. (1982) The solubilities of calcite, aragonite and vaterite in CO3-H2O solutions between 0 and 9°C, and an evaluation of the aqueous model for the system CaCO3-CO∼-H2O. Geochimica et Cosmochimica Ada, 46, 10111040.
Qiao, L., Feng, Q.-L. and Li, Z. (2006) Special vaterite found in freshwater lackluster pearls. Crystal Growth and Design, 7, 275279.
Rhoads, D.C. and Lutz, R.A. (1980) Skeletal growth of aquatic organisms: Biological records of environmental change. Plenum Press, New York and London, 750 pp.
Rousseau, M., Lopez, E., Stempfle, P., Brendle, M., Franke, L., Alain, G., Naslain, R. and Bourrat, X. (2005) Multiscale structure of sheet nacre. Biomaterials, 26, 62546262.
Schone, B.R., Dunca, E., Fiebig, J. and Pfeiffer, M. (2005) Mutvei's solution: An ideal agent for resolving microgrowth structures of biogenic carbonates. Palaeogeography, Palaeoclimatology, Palaeoecology, 228, 149166.
Shaikh, A.M. (1990) A new crystal growth form of vaterite, CaCO3 . Journal of Applied Crystallography, 23, 263265.
Shen, Q., Wei, H., Zhou, Y., Huang, Y., Yang, H., Wang, D. and Xu, D. (2006) Properties of amorphous calcium carbonate and the template action of vaterite spheres. Journal of Physical Chemistry, B110, 29943000.
Soldati, A.L., Jacob, D.E., Wehrmeister, U., Hager, T. and Hofmeister, W. (2008) Micro Raman spectro-scopy of pigments contained in different calcium carbonate polymorphs from freshwater cultured pearls. Journal of Raman Spectroscopy, 39, 525536.
Sugawara, A. and Kato, T. (2000) Aragonite CaCO3 thin-film formation by cooperation of Mg2+ and organic polymer matrices. Chemical Communications, 6, 487488
Urmos, I, Sharma, S.K. and Mackenzie, F.T. (1991) Characterization of some biogenic carbonates with Raman spectroscopy. American Mineralogist, 76, 641646.
Wada, N., Suda, S., Kanamura, K. and Umegaki, T. (2004) Formation of thin calcium carbonate films with aragonite and vaterite forms coexisting with polyacrylic acids and chitosan membranes. Journal of Colloid and Interface Science, 279, 167174.
Wehrmeister, U., Jacob, D.E., Soldati, A.L., Hager, T. and Hofmeister, W. (2007) Vaterite in freshwater cultured pearls from China and Japan. The Journal of Gemmology, 31, 269276.
Wehrmeister, U., Goetz, G., Jacob, D., Soldati, A.L., Duschner, H. and Hofmeister, W. (2008) Visualization of structure and CaCO3 polymorphs in freshwater cultured pearls by computerized X-ray micro tomography. Journal of Gemmology (in press).


Structural characterization and chemical composition of aragonite and vaterite in freshwater cultured pearls

  • A. L. Soldati (a1), D. E. Jacob (a1), U. Wehrmeister (a2) and W. Hofmeister (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed