Skip to main content Accessibility help

Staročeskéite, Ag0.70Pb1.60(Bi1.35Sb1.35)Σ2.70S6, from Kutná Hora, Czech Republic, a new member of the lillianite homologous series

  • Richard Pažout (a1) and Jiří Sejkora (a2)


A new mineral species, staročeskéite, ideally Ag0.70Pb1.60(Bi1.35Sb1.35)Σ2.70S6, has been found at Kutná Hora ore district, Czech Republic. The mineral occurs in the late-stage Bi-mineralization associated with other lillianite homologues (gustavite, terrywallaceite, vikingite, treasurite, eskimoite and Bi-rich andorite-group minerals) and other bismuth sulfosalts (izoklakeite, cosalite and Bi-rich jamesonite) in quartz gangue. The mineral occurs as lath shaped crystals or anhedral grains up to 80 µm × 70 µm, growing together in aggregates up to 200 µm × 150 µm across. Staročeskéite is steel-grey in colour and has a metallic lustre, the calculated density is 6.185 g/cm3. In reflected light staročeskéite is greyish white; bireflectance and pleochroism are weak with greyish tints. Anisotropy is weak to medium with grey to bluish grey rotation tints. Internal reflections were not observed. The empirical formula based on electron probe microanalyses and calculated on 11 apfu is: (Ag0.68Cu0.01)Σ0.69(Pb1.56Fe0.01Cd0.01)Σ1.58(Bi1.32Sb1.37)Σ2.69(S6.04Se0.01)Σ6.05. The ideal formula is Ag0.70Pb1.60(Bi1.35Sb1.35)Σ2.70S6, which requires Ag 7.22, Pb 31.70, Bi 26.97, Sb 15.72 and S 18.39 wt.%, total 100.00 wt.%. Staročeskéite is a member of the lillianite homologous series with N = 4. Unlike gustavite and terrywallaceite, staročeskéite, similarly to lillianite, is orthorhombic, space group Cmcm, with a = 4.2539(8), b = 13.3094(8), c = 19.625(1) Å, V = 1111.1(2) Å3 and Z = 4. The structure of staročeskéite contains four sulfur sites and three metal sites: one pure Pb site and two mixed sites, M1 (0.52Bi + 0.356Ag + 0.124Sb) and M2 (0.601Sb + 0.259Pb + 0.14Bi). The mineral is characterized by the Bi:Sb ratio 1:1 (Bi/(Bi + Sb) = 0.50) and the Ag+ + Bi3+, Sb3+ ↔ 2 Pb2+ substitution (L%) equal to 70%. Thus the mineral lies between two series of the lillianite structures with N = 4, between the lillianite–gustavite series and the andorite series.


Corresponding author


Hide All

Associate Editor: Andrew Christy



Hide All
Hawthorne, F.C. (2002) The use of end-member charge arrangements in defining new mineral species and heterovalent substitutions in complex minerals. Canadian Mineralogist, 40, 699710.
Holub, M., Hoffman, V., Mikuš, M. and Trdlička, Z. (1982) Base-metal mineralization of the Kutná Hora ore district. Sborník geologických věd,ložisková geologie a mineralogie, 23, 69123 [in Czech].
Keutsch, F. and Brodtkorb, M.K. (2008) Metalliferous paragenesis of the San José mine, Oruro, Bolivia. Journal of South American Earth Sciences, 25, 485491.
Makovicky, E. and Karup-Møller, S. (1977 a) Chemistry and crystallography of the lillianite homologous series, part I. General properties and definitions. Neues Jahrbuch für Mineralogie, Abhandlungen, 130, 265287.
Makovicky, E. and Karup-Møller, S. (1977 b) Chemistry and crystallography of the lillianite homologous series, part II. Definition of new minerals: eskimoite, vikingite, ourayite and treasurite. Redefinition of schirmerite and new data on the lillianite–gustavite solid solution series. Neues Jahrbuch für Mineralogie, Abhandlungen, 131, 5682.
Makovicky, E. and Topa, D. (2014) Lillianites and andorites: new life for the oldest homologous series of sulfosalts. Mineralogical Magazine, 78, 387414.
Malec, J. and Pauliš, P. (1997) Kutná Hora ore mining district and appearances of past mining and metallurgic activities on its territory. Bulletin mineralogicko-petrologického Oddělení Narodního Muzea, 4–5, 86105 [in Czech].
Mozgova, N.N., Nenasheva, S.N., Borodaev, J.S., Sivcov, A.V., Ryabeva, E.G. and Gamayanin, G.N. (1987) New mineral varieties in sulfosalts group. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 116, 614–28 [in Russian].
Mozgova, N.N., Nenasheva, S.N., Jefimov, A.V., Borodaev, S., Cepin, A.I. and Sivcov, A.V. (1988) New data about antimony-bismuth lilianite homologues. Mineralogicheskij Zurnal, 10, 3545 [in Russian].
Moëlo, Y., Makovicky, E. and Karup-Møller, S. (1989) Sulfures complexes plombo argentiféres: minéralogie et cristallochimie de la série andorite–fizélyite, (Pb,Mn,Fe,Cd,Sn)3–2x(Ag,Cu)x(Sb,Bi,As)2+x(S,Se)6. Documents du BRGM, 167, 1107.
Moëlo, Y., Makovicky, E., Mozgova, N.N., Jambor, J.L., Cook, N., Pring, A., Paar, W., Nickel, E.H., Graeser, S., Karup-Møller, S., Balić-Žunić, T., Mumme, W.G., Vurro, F., Topa, D., Bindi, L., Bente, K. and Shimizu, M. (2008) Sulfosalt systematics: a review. Report of the sulfosalt subcommittee of the IMA commission on ore mineralogy. European Journal of Mineralogy, 20, 746.
Pauliš, P. (1998) Minerals of Kutná Hora Ore District. Kuttna, Kutná Hora, pp. 148 [in Czech].
Pažout, R. (2017) Lillianite homologues from Kutná Hora ore district, Czech Republic: a case of large-scale Sb for Bi substitution. Journal of Geosciences, 62, 3757.
Pažout, R. and Dušek, M. (2009) Natural monoclinic AgPb(Bi2Sb)3S6, Sb-rich gustavite. Acta Crystallographica, Section C, 65, i77i80.
Pažout, R. and Dušek, M (2010) Crystal structure of natural orthorhombic Ag0.71Pb1.52Bi1.32Sb1.45S6, a lillianite homologue with N = 4; comparison with gustavite. European Journal of Mineralogy, 22, 741750.
Pažout, R. and Sejkora, J. (2017) Staročeskéite, IMA 2016-101. CNMNC Newsletter No. 36, April 2017, page 405; Mineralogical Magazine, 81, 403409.
Pažout, R., Sejkora, J. and Šrein, V. (2017) Bismuth and bismuth–antimony sulfosalts from Kutná Hora vein Ag–Pb–Zn ore district, Republic. Journal of Geosciences, 62, 3757.
Petříček, V., Dušek, M. and Palatinus, L. (2006) Jana2006. Structure Software Programs. Institute of Physics, Prague, Czech Republic.
Pinto, D., Balić-Žunić, T., Garavelli, A., Makovicky, E. and Vurro, F. (2006) Comparative crystal structure study of Ag-free lillianite and galenobismuthite from Vulcano, Aeolian island, Italy. Canadian Mineralogist, 44, 159175.
Pouchou, J.L. and Pichoir, F. (1985) “PAP” (φ ρZ) procedure for improved quantitative microanalysis. Pp. 104106 in: Microbeam Analysis (Armstrong, J. T., editor). San Francisco Press, San Francisco, USA.
Topa, D. and Makovicky, E. (2011) The crystal structure of gustavite, PbAgBi3S6. Analysis of twinning and polytypism using the OD approach. European Journal of Mineralogy, 23, 537550.
Topa, D., Makovicky, E., Favreau, G., Bourgoin, V., Boulliard, J.C., Zagler, G. and Putz, H. (2013 a) Jasrouxite, a new Pb–Ag–As–Sb member of the lillianite homologous series from Jas Roux, Hautes-Alpes, France. European Journal of Mineralogy, 25, 10311038.
Topa, D., Makovicky, E. and Paar, W.H. (2013 b) Clino-oscarkempffite, IMA 2012- 086. CNMNC Newsletter No. 16, August 2013, page 2696; Mineralogical Magazine, 77, 26952709.
Topa, D., Makovicky, E., Putz, H., Zagler, G. and Tajjedin, H. (2013 c) Arsenquatrandorite, IMA 2012-087. CNMNC 2696 Mineralogical Magazine, 77, 26952709.
Topa, D., Makovicky, E., Stanley, C.J. and Robetzs, A.C. (2016) Oscarkempffite, Ag10Pb4(Sb17Bi9)Σ=26S48 a new Sb-Bi member of the lillianite homologous series, Mineralogical Magazine, 80, 809817.
Yang, H., Downs, R.T., Evans, S.H. and Pinch, W.W. (2013) Terrywallaceite, AgPb(Sb,Bi)3S6, isotypic with gustavite, a new mineral from Mina Herminia, Julcani Mining District, Huancavelica, Peru. American Mineralogist, 98, 13101314.
Žák, K., Dobeš, P. and Sztacho, P. (1996) Vein-type hydrothermal deposits of the Bohemian Massif: Evolution of hydrothermal fluid sources and relation to extension events in the crust. Global Tectonics and Metallogeny, 5, 175178.


Staročeskéite, Ag0.70Pb1.60(Bi1.35Sb1.35)Σ2.70S6, from Kutná Hora, Czech Republic, a new member of the lillianite homologous series

  • Richard Pažout (a1) and Jiří Sejkora (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed