Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-25T10:03:30.169Z Has data issue: false hasContentIssue false

A sapphirine-cordierite-bronzite-phlogopite paragenesis from Namaqualand, South Africa

Published online by Cambridge University Press:  05 July 2018

T. N. Clifford
Affiliation:
Department of Geology, University of the Witwatersrand, Johannesburg, South Africa
E. F. Stumpfl
Affiliation:
Montanistische Hochschule, Leoben, Austria (formerly Mineralogisch-Petrographisches Institut, Universitäit Hamburg, Germany)
J. R. McIver
Affiliation:
Department of Geology, University of the Witwatersrand, Johannesburg, South Africa

Summary

The rock composition and electron microprobe analyses of the five constituent minerals are presented for a sapphirine-cordierite-bronzite-phlogopite-spinel rock from Namaqualand, South Africa. These data are considered inrelation to experimental data and the mineralogy of certain associated rock types, and it is suggested that the sapphirine-bearing rock represents a metamorphic residuum (restite) after extraction of anatectic granitic liquid from an original argillaceous sediment.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anastasiou, (P.) and Seifert, (F.), 1972. Solid solubility of Al2O3 in enstatite at high temperatures and 1-5 Kb water pressure. Contr. Min. Petr. 34, 272-87.CrossRefGoogle Scholar
Barker, (F.), 1964. Sapphirine-bearing rock, Val Codera, Italy. Amer. Min. 49, 146-52.Google Scholar
Benedict, (P. C.), Wild, (D. De N.), Cornelissen, (A. K.), and staff, 1964. Progress report on the geology of the O'okiep Copper District. In: S. H. Haughton (Editor), The geology of some ore deposits of southern Africa, pp. 239-302. Geol. Soc. S. Aff.Google Scholar
Chekirda, (A. I.) and Entin, (A. R.) [Чeкиρдa (A. И.) и ЭHTИH (A. ρ.) 1969. New data on the sapphirine associations of the Aldan Shield. Dokl. Acad. Sci. U.S.S.R., Earth Sci. Sect. 186, 131-4. Transl. from дOкʌ. aк;aд. Hayк CCCρ, 186, 673-6.Google Scholar
Clifford, (T. N.), Gronow, (J.), Rex, (D. C.), and Burger, (A. J.), 1975. Geochronological and petrogenetic studies of high-grade metamorphic rocks and intrusives in Namaqualand, South Africa. Journ. Petrol 16, 154-88.CrossRefGoogle Scholar
Deer, (W. A.), Howle, (R. A.), and Zussman, (J.), 1962a, b. Rock forming minerals, I and 3, Longmans, London.Google Scholar
Fawcett, (J. J.) and Yoder, (H. S.), 1963. Hydrous systems and metamorphic rocks. The liquidus region at 10 kilobars PH3O. Carnegie Inst. Wash. Year Book, 62, 143-5.Google Scholar
Foissy, (B.), Kleiber, (J.), and Picot, (P.), 1966. Note sur la pr6sence de saphirine dans les ultrabasites d'Andriamena (centre nord de Madagascar). Compt. Rend. Semaine Gdol., 1965, Madagascar.Google Scholar
Fujimori, (S.) and Allard, (G. O.), 1966. Ocorrencia de safirina em Salvador, Bahia. Bol. Soc. Bras. Geol. 15, 67-81.Google Scholar
Grant, (A. J.), 1968. Partial melting of common rocks as a possible source of cordierite-anthophyllite bearing assemblages. Amer. Journ. Sci. 266, 908-31.CrossRefGoogle Scholar
Green, (D. H.) and Ringwood, (A. E.), 1967. All experimental investigation of the gabbro to eclogite transformation and its petrological applications. Geochimica Acta, 31, 767-833.CrossRefGoogle Scholar
Herd, (R. K.), Windley, (B. F.), and Ghisler, (M.), 1969. The mode of occurrence and petrogenesis of the sapphirine-bearing and associated rocks of West Greenland. Rap. Gron. Geol. Unders. 24.Google Scholar
Holdaway, (M. J.), 1971. Stability of andalusite and the aluminum silicate phase diagram. Amer. Journ. Sci. 271, 97-131.CrossRefGoogle Scholar
Hudson, (D. R.) and Wilson, (A. F.), 1966. A new occurrence of sapphirine and related anthophyllite from central Australia. Geol. Mag. 103, 293-8.CrossRefGoogle Scholar
James, (R. S.) and Hamilton, (D. L.), 1969. Phase relations in the system NaAlSi3O8-KAlSi3O8-CaAl2Si2O8-SiO2 at 1 kilobar water vapour pressure. Contr. Min. Petr. 21, 111-41.CrossRefGoogle Scholar
Joubert, (P.), 1971. The regional tectonism of the gneisses of part of Namaqualand. Bull. Precambrian Res. Unit, Univ. Cape Town. Google Scholar
Keesmann, (I.), Matthes, (S.), Schreyer, (W.), and Seifert, (F.), 1971. Stability of almandine in the system FeO-(Fe2O3)-Al2O3-SiO2-(H2O) at elevated pressures. Contr. Min. Petr. 31, 132-44.CrossRefGoogle Scholar
Kimbara, (K.), Shimoda, (S.), and Sato, (O.), 1971. An interstratified mineral of chlorite and montmorillonite from the green tuff in the Yamakata district, Ibaragi Prefecture, Japan. Journ. Japanese Assoc. Min. Petr. Econ. Geol. 66, 99-111.[M.A. 73-191].CrossRefGoogle Scholar
Leake, (S. E.) and Skirrow, (G.), 1960. The pelitic hornfelses of the Cashel-Lough Wheelaun intrusion, County Galway, Eire. Journ. Geol. 68, 23-40.CrossRefGoogle Scholar
Lensch, (G.), 1971. Das Vorkommen yon Sapphirin im Peridotitkörper yon Finero (Zone yon Ivrea, Italienische Westalpen). Contr. Min. Petr. 31, 145-53.CrossRefGoogle Scholar
Luth, (W. C.), Jahns, (R. H.), and Tuttle, (O. F.), 1964. The granite system at pressures of 4 to 10 kilobars. Journ. Geophys. Res. 69, 759-77.CrossRefGoogle Scholar
Martin, (H.), 1965. The Precambrian geology of South West Africa and Namaqualand. Precambrian Res. Unit, Univ. Cape Town.Google Scholar
Muthuswami, (T. N.), 1949. Sapphirine—(Madura). Proe. Indian Acad. Sci., Sect. A, 30, 295-301.CrossRefGoogle Scholar
Newton, (R. C.), 1972. An experimental determination of the high-pressure stability limits of magnesian cordierite under wet and dry conditions. Journ. Geol. 80, 398-420.CrossRefGoogle Scholar
Nockolds, (S. R.), 1954. Average chemical compositions of some igneous rocks. Bull. Geol. Soc. Amer. 65, 1007-32.CrossRefGoogle Scholar
Phaup, (A. E.), 1973. Chemical analyses of the rocks, ores and minerals of Rhodesia. Rhodesia Geol. Surv. Bull. 71.Google Scholar
Robertson, (I. O. M.), 1973. Metamorphism and intrusion in part of the southern edge of the Rhodesian craton and the north margin of the Limpopo mobile belt. Ph.D. thesis, Univ. London. Google Scholar
Ross, (C. S.) and Hendricks, (S. B.), 1945. Minerals of the montmorillonite group, their origin and relation to soils and days. U.S. Geol. Surv. Prof. Paper 205B.CrossRefGoogle Scholar
Rucklidge, (J.), 1967. A computer program for processing microprobe data. Journ. Geol. 75, 126.CrossRefGoogle Scholar
Schreyer, (W.), 1968. A reconnaissance study of the system MgO-Al2Oa-SiO2-H2O at pressures be tween 10 and 25 kb. Carnegie Inst. Wash. Year Book 66, 380-92.Google Scholar
Schreyer, (W.), and Seifert, (F.), 1969. Compatibility relations of the aluminum silicates in the systems MgO-Al2O3-SiO2-H2O and K2O-MgO-Al203-SiO2-H2O at high pressures. Amer. Journ. Sci. 267, 371-88.CrossRefGoogle Scholar
Schreyer, (W.), and Yoder, (H. S.), 1964. The system Mg-cordierite-H2O and related rocks. Neues Jahrb. Min. .4bh. 101, 271-342.Google Scholar
Segnit, (E. R.), 1957. Sapphirine-bearing rocks from MacRobertson Land, Antarctica. Min. Mag. 31, 690-7.Google Scholar
Seifert, (F.), 1970. Low-temperature compatibility relations of cordierite in haplopelites of the system K2O-MgO-Al2O3-SiO2-H2O. Journ. Petrology, 11, 73-99.CrossRefGoogle Scholar
Seifert, (F.), 1974. Stability of sapphirine: a study of the aluminous part of the system MgO-A1203-SiO2-H2O. Journ. Geol. 82, 173-204.CrossRefGoogle Scholar
Seifert, (F.), 1975. Boron-free kornerupine—a high-pressure phase. Amer. Journ. Sci. 275, 57-87.CrossRefGoogle Scholar
Shaw, (D. M.), 1956. Geochemistry of pelitic rocks. Part III: major elements and general geochemistry. Bull. Geol. Soc. Amer. 67, 919-34.CrossRefGoogle Scholar
Touret, (J.) and De La Roche, (H.), 1971. Saphirine a Snaresund, pr6s de Tvedestrand (Norvègemeridionale). Norsk. Geol. Tidss. 1, 169-75.Google Scholar
Venter, (P. P.), 1951. The petrology of the Nababeep and Brandberg gneisses. M.Sc. thesis, Univ. Pretoria. Google Scholar
Winkler, (H. G. F.), 1970. Abolition of metamorphic facies, introduction of the four divisions of metamorphic stage, and of a classification based on isograds in common rocks. Neues Jahrb. Min., Monatsh. 189-248.Google Scholar
Wyllie, (P. J.) and Tuttle, (O. F.), 1961. Hydrothermal melting of shales. Geol. Mag. 98, 56-66.CrossRefGoogle Scholar
Yoder, (H. S.), 1971. Aluminous anthophyllite: the MgO-Al2O3-SiO2-H2O system at 850°C and 10 kb. Carnegie Inst. Wash. Year Book, 70, 142-5.Google Scholar