Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-18T18:52:56.863Z Has data issue: false hasContentIssue false

A reinvestigation of mayenite from the type locality, the Ettringer Bellerberg volcano near Mayen, Eifel district, Germany

Published online by Cambridge University Press:  05 July 2018

E. V. Galuskin*
Affiliation:
Faculty of Earth Sciences, Department of Geochemistry, Mineralogy and Petrography, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland
J. Kusz
Affiliation:
Faculty of Earth Sciences, Department of Geochemistry, Mineralogy and Petrography, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland
T. Armbruster
Affiliation:
Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
R. Bailau
Affiliation:
Mineralogical Crystallography, Institute of Geological Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
I. O. Galuskina
Affiliation:
Dienstleistungszentrum ländlicher Raum (DLR) Westerwald-Osteifel-Aussenstelle Mayen, Bahnhofstrasse 45, 56727 Mayen, Germany
B. Ternes
Affiliation:
Systematic Mineralogy, 44, 11th line V.O, apt. 76, Saint Petersburg 199178, Russia
M. Murashko
Affiliation:
Systematic Mineralogy, 44, 11th line V.O, apt. 76, Saint Petersburg 199178, Russia

Abstract

New electron-microprobe analyses of mayenite from the Ettringer Bellerberg volcano near Mayen in the Eifel district, Germany have high Cl contents and Raman spectroscopy indicates the presence of OH groups. Neither of these components is included in the generally accepted chemical formula, Ca12Al14O33. A refinement of the crystal structure by single-crystal X-ray methods reveals a previously unrecognized partial substitution. The O2 site which forms one of the apices of an AlO4 tetrahedron (with 3 × O1 sites) is replaced by 3 × O2a sites, which change the coordination of the central Al atom from tetrahedral to octahedral. This substitution is related to partial hydration of Ca12Al14O32Cl2 according to the isomorphic scheme (O2– + Cl–) ↔ 3(OH). The revised composition of Eifel mayenite is best described by the formula Ca12Al14O32–xCl2–x(OH)3x (x ∼0.75); the original formula, Ca12Al14O33, is inadequate. The analysed mineral can be considered to consist of endmember Ca12Al14O32Cl2 (62.5 mol.%) and endmember Ca12Al14O30(OH)6 (37.5 mol.%).

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bartl, H. and Scheller, T. (1970) Zur Struktur des 12CaO·7A12O3. Neues Jahrbuch für Mineralogie, Monatshefte, 1970, 547552 Google Scholar
Boysen, H., Lerch, M., Stys, A. and Senyshyn, A. (2007) Structure and oxygen mobility in mayenite (Ca12Al14O33): a high-temperature neutron powder diffraction study. Act Crystallographica, B63, 675682 CrossRefGoogle Scholar
Boysen, H., Kaiser-Bischoff, I., Lerch, M., Berendts, S., Börger, A., Trots, D.M., Hoelze, M. and Senyshyn, A. (2009) Structures and properties of variously doped mayenite investigated by neutron and synchrotron powder diffraction. Zeitschrift für Kristallographie. Supplement, 30, 323328 Google Scholar
Boysen, H., Kaiser-Bischoff, I., Lerch, M., Berendt, S., Hoelzel, M. and Senyshyn, A. (2010) Disorder and diffusion in mayenite. Acta Physica Polonica, 117, 3841.CrossRefGoogle Scholar
Büssem, W. and Eitel, A. (1936) Die Struktur des Pentacalciumtrialuminats . Zeitschrift für Kristallographie, 95, 175188 Google Scholar
Feng, Q.L., Glasser, F.P., Howie, R.A. and Lachowski, E.E. (1988) Chlorosilicate with the 12CaO·7Al2O3 structure and its relationship to garnet. Supplement to Act Crystallographica, C44, 589592 Google Scholar
Fujita, S., Suzuki, K., Ohkawa, M., Shibasaki, Y. and Mori, T. (2001) Reaction of hydrogrossular with hydrogen chloride gas at high temperature. Chemistry of Materials, 13, 25232527 CrossRefGoogle Scholar
Galuskin, E., Galuskina, I. and Winiarska, A. (1995) Epitaxy of achtarandite on grossular - the key to the problem of achtarandite. Neues Jahrbuch für Mineralogie, Monatshefte, 1995, 306320 Google Scholar
Galuskin, E.V., Gazeev, V.M., Lazic, B., Armbruster, T., Galuskina, I.O., Zadov, A.E., Pertsev, N.N., Wrzalik, R., Dzierzanowski, P., Gurbanov, A.G. and Bzowska, G. (2009) Chegemite - Ca7(SiO4)3(OH)2 - a new humite-group calcium mineral from the Northern Caucasus, Kabardino-Balkaria, Russia. Europea. Journal of Mineralogy, 21, 10451059 CrossRefGoogle Scholar
Galuskin, E.V., Bailau, R., Galuskina, I.O., Prusik, A.K., Gazeev, V.M., Zadov, A.E., Pertsev, N.N., Jezak L., Gurbanov, A.G. and Dubrovinsky, L. (2011) Eltyubyuite, IMA 20112022.Google Scholar
CNMNC, Newsletter No. 10, October 2011, page 2553; Mineralogical Magazine, 75, 25492561 CrossRefGoogle Scholar
Galuskina, I., Galuskin, E. and Sitarz, M. (1998) Atoll hydrogarnet and mechanism of the formation of achtarandite pseudomorphs. Neues Jahrbuch für Mineralogie, Monatshefte, 1998, 4962.Google Scholar
Gross, S. (1977) The mineralogy of the Hatrurim Formation, Israel. Geological Survey Israel Bulletin, 70, 1011 Google Scholar
Hayashi, K. (2011) Kinetics of electron decay in hydride ion-doped mayenite. Journal of the Physical Chemistry, 115, 1100311009 Google Scholar
Hentschel, G. (1964) Mayenit, 12CaO·7Al2O3, und Brownmillerit, 2CaO·(Al,Fe)2O3, zwei neue Minerale in den Kalksteineinschlüssen der Lava des Ettringer Bellerberges. Neues Jahrbuch für Mineralogie, Monatshefte, 1964, 2229 Google Scholar
Hosono, H., Hayashi, K. and Hirano, M. (2007) Active anion manipulation for emergence of active functions in the nanoporous crystal 12CaO·7Al2O3: a case study of abundant element strategy. Journal of Material Sciences, 42, 18721883 CrossRefGoogle Scholar
Hosono, H., Hayashi, K., Kajihara, K., Sushko, P.V. and Shluger, A.L. (2009) Oxygen ion conduction in 12CaO·7Al2O3: O2- conduction mechanism and possibility of O- fast conduction. Solid Stats Ionics, 180, 550555 CrossRefGoogle Scholar
Iwata, T., Masahide, M. and Fukuda, K. (2008) Crystal structure of Ca12Al14O32Cl2 and luminescence properties of Ca12Al14O32Cl2: Eu2+. Journal of Solid State Chemistry, 181, 5155 CrossRefGoogle Scholar
Janek, J. and Lee, D.-K. (2010) Defect chemistry of the mixed conducting cage compound Ca12Al14O33. Journal of the Korean Cerami. Society, 47, 99105 Google Scholar
Li, C., Hirabayashi, D. and Suzuki, K. (2009) A crucial role of O2 - and O22- on mayenite structure for biomass tar steam reforming over Ni/Ca12Al14O33. Applied Catalysis B. Environmental, 88, 351360 Google Scholar
Ma, C., Connolly H.C. Jr, Beckett, J.R., Tschauner, O., Rossman, G.R., Kampf, A.R., Zega, T.J., Sweeney Smith, S.A. and Devin L. Schrader, D.L. (2011) Brearleyite, Ca12Al14O32Cl2, a new alteration mineral from the NWA 1934 meteorite. America. Mineralogist, 96, 11991206 CrossRefGoogle Scholar
Matsuishi, S., Toda, Y., Miyakawa, M., Hayashi, K., Kamiya, K., Hirano, M., Tanaka, I. and Hosono, H. (2003) High-density electron anions in a nanoporous single crystal: [Ca24Al28O64]4+(4e-). Science, 301, 626629 CrossRefGoogle Scholar
Matsuishi, S., Nomura, T., Hirano, M., Kodama, K., Shamoto, S. and Hosono, H. (2009) Direct synthesis of powdery inorganic electride [Ca24Al28O64]4+(e-)4 and determination of oxygen stoichiometry. Chemistry of Materials, 21, 25892591 CrossRefGoogle Scholar
Mihajlović, T., Lengauer, K.L., Ntaflos, T., Kolitsch, U. and Tillmanns, E. (2004) Two new minerals, rondorfite, Ca8Mg[SiO4]4Cl2, and almarudite, K(□,Na)2(Mn,Fe,Mg)2 (Be,Al)3Si12O30], and a study of iron-rich wadalite, Ca12[(A18Si4Fe2) O32]Cl6, from the Bellerberg (Bellberg) volcano, Eifel, Germany. Neues Jahrbuch für Mineralogie, Abhandlungen, 179, 265294 Google Scholar
Palacios, L., De La Torre, A.G., Bruque, S., García- Mun˜oz, J.L., García-Granda, S., Sheptyakov, D. and Aranda, M.A.G. (2007) Crystal structures and in-situ formation study of mayenite electrides. Inorgani. Chemistry, 46, 41674176 Google Scholar
Palacios, L., Cabeza, A., Bruque, S., García-Granda, S. and Aranda, M.A.G. (2008) Structure and electrons in mayenite electrides. Inorgani. Chemistry, 47, 26612667 Google Scholar
Park, C.-K. (1998) Characteristic and hydration of Ca12-xA7·(CaF2) (x = 0 ~ 1.5) minerals. Cement and Concret. Research, 28, 13571362 Google Scholar
Qijun, Y., Sugita, S., Xiuju, F. and Jinxiao, M. (1997) On the preparation of single crystal of 11CaO·7Al2O3·CaF2 and the confirmation of its structure. Cement and Concret. Research, 27, 14391449 Google Scholar
Ruszak, M., Witkowski, S. and Sojka, Z. (2007) EPR and Raman investigations into anionic redox chemistry of nanoporous 12CaO·7Al2O3 interacting with O2, H2 and N2O. Research o. Chemical Intermediates, 33, 689703 CrossRefGoogle Scholar
Sakakura, T., Tanaka, K., Takenaka, Y., Matsuishi, S., Hosono H. and Kishimoto, S. (2011) Determination of the local structure of a cage with an oxygen ion in Ca12Al14O33. Act Crystallographica, B67, 193204 CrossRefGoogle Scholar
Schröpfer, L. and Bartl, H. (1993) Oriented decomposit ion and reconstruction of hydrogarne t , Ca3Al2(OH)12. Europea. Journal of Mineralogy, 5, 11331144 CrossRefGoogle Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Act Crystallographica, A64, 112122 CrossRefGoogle Scholar
Strandbakke, R., Kongshaug, C., Haugsrud, R. and Norby, T. (2009) High-temperature hydration and conductivity of mayenite, Ca12Al14O33. Journal of Physica. Chemistry, C113, 89388944 Google Scholar
Sun, J., Chong-fu Song, C., Ninga, S., Lina, S. and Lia, Q. (2009) Preparation and characterization of storage and emission functional material of chlorine anion: [Ca24Al28O64]4+·(Cl-)3.80(O2-)0.10. Chinese Journal o. Chemical Physics, 22, 417422 Google Scholar
Tolkacheva, A.S., Shkerin, S.N., Plaksin, S.V., Vovkotrub, E.G., Bulanin, K.M., Kochedykova, V.A., Ordinartseva, D.P., Gyrdasova, O.I. and Molchanova, N.G. (2011) Synthesis of dense ceramics of single-phase mayenite (Ca12Al14O32)O. Russian Journal of Applie. Chemistry, 84, 907911 Google Scholar
Tsukimura, K., Kanazawa, Y., Aoki, M. and Bunno, M. (1993) Structure of wadalite, Ca6Al5Si2O16Cl3. Act Crystallographica, C49, 205207 Google Scholar
Williams, P.P. (1973) Refinement of structure of 11CaO·7Al2O3·CaF2. Act Crystallographica, B29, 15501551 CrossRefGoogle Scholar