Skip to main content Accessibility help

Redefinition of thérèsemagnanite, NaCo4(SO4)(OH)6Cl·6H2O: new data and relationship to ‘cobaltogordaite’

  • Anatoly V. Kasatkin (a1), Jakub Plášil (a2), Radek Škoda (a3), Dmitriy I. Belakovskiy (a1), Joe Marty (a4), Nicolas Meisser (a5) and Igor V. Pekov (a6)...


Thérèsemagnanite was originally described from the Cap Garonne mine, Var, France. Its ideal formula was reported as (Co,Zn,Ni)6(SO4)(OH,Cl)10·8H2O; without crystal structure data, only the powder X-ray diffraction pattern was given. Revision of the holotype material revealed that thérèsemagnanite is identical to ‘cobaltogordaite’ (IMA2014-043), recently described from the Blue Lizard mine, Utah, USA. Thérèsemagnanite is thus redefined in accordance with the new data obtained for the neotype specimen from Blue Lizard (formerly the holotype specimen of ‘cobaltogordaite’) and ‘cobaltogordaite’ has been discredited by the International Mineralogical Association Commission on New Mineral Nomenclature and Classification (IMA CNMNC). Thérèsemagnanite has the ideal, end-member formula NaCo4(SO4)(OH)6Cl·6H2O. The empirical formulae of the holotype (Cap Garonne) and the neotype (Blue Lizard), both based on microprobe analyses and calculated on the basis of 17 O + Cl atoms per formula unit (with fixed 6 OH groups and 6 H2O molecules; H content is calculated by stoichiometry) are (Na0.64K0.09)Σ0.73(Co2.35Zn1.22Ni0.50)Σ4.07S1.02O3.98(OH)6Cl1.02·6H2O and Na1.01(Co1.90Zn1.37Ni0.48Cu0.15Mn0.05)Σ3.95S1.03O4.09(OH)6Cl0.91·6H2O, respectively. Thérèsemagnanite is trigonal, P $\overline 3 $ , a = 8.349(3), c = 13.031(2) Å, V = 786.6(4) Å3 and Z = 2 (neotype). The strongest powder X-ray diffraction lines are [dobs in Å (hkl) (Irel)]: 13.10 (001)(100), 6.53 (002)(8), 4.173 (110)(4), 3.517 (112)(5), 2.975 (104, 10 $\overline 4 $ )(4), 2.676 (211)(5) and 2.520 (12 $\bar 2$ )(5) (neotype). Thérèsemagnanite is a cobalt analogue of gordaite, NaZn4(SO4)(OH)6Cl·6H2O. These minerals represent the gordaite group, accepted by the IMA CNMNC.


Corresponding author


Hide All

Associate Editor: Stuart Mills



Hide All
Adiwidjaja, G., Friese, K., Klaska, K.-H. and Schlüter, J. (1997) The crystal structure of gordaite NaZn4(SO4)(OH)6Cl·6H2O. Zeitschrift für Kristallographie, 212, 704707.
Chenoweth, W.L. (1993) The geology and production history of the uranium deposits in the White Canyon mining district, San Juan County, Utah. Miscellaneous Publication 93-3, Utah Geological Survey, Salt Lake City, Utah, USA.
Favreau, G. and Galea-Clolus, V. (2014) Cap Garonne. Association Française de Microminéralogie, France, 320 pp.
Hålenius, U., Hatert, F., Pasero, M. and Mills, S.J. (2015) IMA Commission on New Minerals, Nomenclature and Classification, Newsletter 27. New minerals and nomenclature modifications approved in 2015. Mineralogical Magazine, 79(5), 12291236.
Kampf, A.R., Plášil, J., Kasatkin, A.V. and Marty, J. (2015) Bobcookite, NaAl(UO2)2(SO4)4(H2O)18, and wetherillite, Na2Mg(UO2)2(SO4)4·18H2O, two new uranyl sulfate minerals from the Blue Lizard mine, San Juan County, Utah, USA. Mineralogical Magazine, 79, 695714.
Kasatkin, A.V., Plášil, J., Belakovskiy, D.I. and Marty, J. (2014) Cobaltogordaite, IMA 2014-043. CNMNC Newsletter No.22, October 2014. Mineralogical Magazine, 78, 12411248.
Kraus, W. and Nolze, G. (1996) POWDER CELL – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied Crystallography, 29, 301303.
Lane, M.D. (2007) Mid-infrared emission spectroscopy of sulphate and sulphate-bearing minerals. American Mineralogist, 92, 118.
Libowitzky, E. (1999) Correlation of O–H stretching frequencies and O–H···O hydrogen bond lengths in minerals. Monatshefte f ür Chemie, 130, 10471059.
Mandarino, J.A. (1981) The Gladstone-Dale relationship: Part IV. The compatibility concept and its application. Canadian Mineralogist, 19, 441450.
Merlet, C. (1994) An accurate computer correction program for quantitative electron probe microanalysis. Microchimica Acta, 114/115, 363376.
Mills, S.J., Hatert, F., Nickel, E.H. and Ferraris, G. (2009) The standardisation of mineral group hierarchies: application to recent nomenclature proposals. European Journal of Mineralogy, 21, 10731080.
Nasdala, L., Witzke, T., Ullrich, B. and Brett, R. (1998) Gordaite [Zn4Na(OH)6(SO4)Cl·6H2O]: second occurrence in the Juan de Fuca Ridge, and new data. American Mineralogist, 83, 11111116.
Sarp, H. (1993) Guarinoite (ZnCoNi)6(SO4)(OH,Cl)10·5H2O et thérèsemagnanite (CoZnNi)6(SO4)(OH,Cl)10·8H2O, deux nouveaux minéraux de la mine de Cap Garonne, Var, France. Archives des Sciences. Genève, 46(1), 3744.
Schlüter, J., Klaska, K.-H., Friese, K., Adiwidjaja, G. and Gebhard, G. (1997) Gordaite, NaZn4(SO4)(OH)6Cl·6H2O, a new mineral from the San Francisco mine, Antofagasta, Chile. Neues Jahrbuch für Mineralogie, Monatshefte, 155162.
Thaden, R.E., Trites, A.F. Jr. and Finnell, T.L. (1964) Geology and ore deposits of the White Canyon area, San Juan and Garfield Counties, Utah. Bulletin, 1125. United States Geological Survey, Washington, D.C.


Redefinition of thérèsemagnanite, NaCo4(SO4)(OH)6Cl·6H2O: new data and relationship to ‘cobaltogordaite’

  • Anatoly V. Kasatkin (a1), Jakub Plášil (a2), Radek Škoda (a3), Dmitriy I. Belakovskiy (a1), Joe Marty (a4), Nicolas Meisser (a5) and Igor V. Pekov (a6)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed