Skip to main content Accessibility help

Redefinition of thalénite-(Y) and discreditation of fluorthalénite-(Y): A re-investigation of type material from the Österby pegmatite, Dalarna, Sweden, and from additional localities

  • Radek Škoda (a1), Jakub Plášil (a2), Erik Jonsson (a3) (a4), Renata Čopjaková (a1), Jörgen Langhof (a5) and Michaela Vašinová Galiová (a6) (a7)...


Using type material from the Österby pegmatite in Dalarna, Sweden, the chemical composition and structural parameters of thalénite-(Y) [ideally Y3Si3O10(OH)] were examined by wavelength dispersive spectroscopy electron microprobe (WDS EMP) analysis and single-crystal X-ray diffraction. High contrast back-scatter electron images of the Österby material show at least two generations of thalénite-(Y). The formula of the primary thalénite-(Y) normalized to 11 anions is (Y2.58Dy0.11Yb0.09Gd0.06Er0.06Ho0.02Sm0.02Tb0.02Lu0.02Nd0.01Tm0.01)Σ3.00Si3.01O10F0.97OH0.03. The secondary thalénite-(Y), replacing the primary material, is weakly enhanced in Y and depleted in the lightest and the heaviest rare-earth elements, yielding the formula (Y2.63Dy0.12Yb0.06Gd0.06Er0.05Ho0.02Sm0.02Tb0.02Tm0.01Nd0.01Lu0.01)Σ3.00Si3.01O10F0.98OH0.02. Structural data for thalénite-(Y) from Österby clearly indicate the monoclinic space group P21/n, with a = 7.3464(4), b = 11.1726(5), c = 10.4180(5) Å, β = 97.318(4)°, V = 848.13(7) Å3, Z = 4, which is consistent with previous investigations. The structure was refined from single-crystal X-ray diffraction data to R 1 = 0.0371 for 1503 unique observed reflections, and the final chemical composition obtained from the refinement, (Y2.64Dy0.36)Σ3.00F0.987[Si3O10], Z = 4, is in good agreement with the empirical formula resulting from electron microprobe (EMP) analysis. Both techniques reveal a strong dominance of F over OH, which means that the type material actually corresponds to the fluorine analogue. Moreover, new EMP analyses of samples of thalénite-(Y) from an additional seven localities (Åskagen and Reunavare in Sweden; White Cloud and Snow Flake in Colorado, USA; the Guy Hazel claim in Arizona, USA; Suishoyama and Souri in Japan) clearly show the prevalence of F over OH as well. Based on these observations, the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association has recommended a redefinition of the chemical composition of thalénite-(Y) to represent the F-dominant species with the ideal formula Y3Si3O10F, as it has historical priority. Consequently, the later described fluorthalénite-(Y) has to be discredited.


Corresponding author


Hide All
Adams, J.W. and Sharp, W.H. (1972) Thalenite and allanite derived from yttrofluorite in the White Cloud pegmatite, South Platte area, Colorado. United States Geological Survey Professional Paper, 800-C, 6369.
Adams, J.W., Hildebrand, F.A. and Havens, R.G. (1962) Thalenite from Teller County, Colorado. United States Geological Survey Professional Paper, 450-D, 68.
Andersson, U.B., Hogdahl, K., Sjostrom, H. and Bergman, S. (2006) Multistage growth and reworking of the Palaeoproterozoic crust in the Bergslagen area, southern Sweden: evidence from U-Pb geochronology. Geological Magazine, 143, 679697.
Badanina, E.V., Trumbull, R.B., Dulski, P., Wiedenbeck, M., Veksler, I.V. and Syritso, L.M. (2006) The behavior of rare-earth and lithophile trace elements in rare-metal granites: A study of fluorite, melt inclusions and host rocks from the Khangilay complex, Transbaikalia, Russia. The Canadian Mineralogist, 44, 667692.
Becerro, A.I., Naranjo, M., Perdigon, A.C. and Trillo, J.M. (2003) hydrothermal chemistry of silicates: low temperature synthesis of yttrium disilicate. Journal of the American Ceramic Society, 86, 15921594.
Benedicks, C. (1898) Hr Benedicks forevisade ett af honom upptackt mineral, Thalenit, fran Osterby i Dalarne och redogjorde for sina undersokningar ofver detta, efter prof. R. Thalen uppkallade mineral. Geologiska Foreningens i Stockholm Forhandlingar, 20, 308312.
Benedicks, C. (1900) Thalenit, ein neues Mineral aus Osterby in Dalekarlien. Bulletin of the Geological Institution of the University of'Upsala, IV, 1—15.
Bjorlykke, H. (1939) Feltspat V. De sjeldne mineraler pa de Norske granittiske pegmatittganger. Norges Geologiske Undersokelse, 154.
Brese, N.E. and O'Keeffe, M. (1991) Bond-valence parameters for solids. Ada Crystallographica, B47, 192197.
Brotzen, O. (1959) Mineral-association in granitic pegmatites. A statistical study. Geologiska Foreningens i Stockholm Forhandlingar, 81, 231296.
Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Ada Crystallographica, B41, 244247.
Cao, M.-J., Zhou, Q.-F., Qin, K.-Z., Tang, D.-M. and Evans, NJ. (2013) The tetrad effect and geochem-istry of apatite from the Altay Koktokay No. 3 pegmatite, Xinjiang, China: implications for pegmatite petrogenesis. Mineralogy and Petrology, 107, 9851005.
Cerny, P. (1991) Rare-element granitic pegmatites, Part 1: anatomy and internal evolution of pegmatite deposits. Geoscience Canada, 18, 4967.
Copjakova, R., Skoda, R., Vasinova Galiova, M. and Novak, M. (2013) Distributions of Y + REE and Sc in tourmaline and their implications for the melt evolution; examples from NYF pegmatites of the Tfebic Pluton, Moldanubian Zone, Czech Republic.
Journal of Geosciences, 58, 113131.
Copjakova, R., Skoda, R., Vasinova Galiova, M. and Novak, M. (2015) Scandium-and REE-rich tourmaline replaced by Sc-rich REE-bearing epidote-group minerals from the mixed (NYF + LCT) Kracovice pegmatite (Moldanubian Zone, Czech Republic). American Mineralogist, 100, 14341451.
Dolejs, D. and Stemprok, M. (2001) Magmatic and hydrothermal evolution of Li-F granites: Cinovec and Krasno intrusions, Krusne hory batholith, Czech Republic. Bulletin of the Czech Geological Survey, 76, 7799.
Fialin, M., Henoc, J. and Remond, G. (1993) A survey of electron microprobe microanalysis using soft radiations: difficulties and presentation of a new computer program for wavelength dispersive spec-trometry. Scanning Microscopy Supplement, 7, 153166.
Fitzpatrick, J. and Pabst, A. (1986) Thalenite from Arizona. American Mineralogist, 71, 188193.
Flink, G. (1910) Bidrag till Sveriges mineralogi II. Arkiv for kemi, mineralogi och geologi, 3, 35, 1166.
Flink, G. (1917) Bidrag till Sveriges mineralogi IV. Arkiv for kemi, mineralogi och geologi, 6, 21, 1149.
Geisler, T., Rashwan, A.A., Rahn, M.K.W., Poller, U., Zwingmann, H., Pidgeon, R.T., Schleicher, H. and Tomaschek, F. (2003) Low-temperature hydrothermal alteration of natural metamict zircons from the Eastern Desert, Egypt. Mineralogical Magazine, 67, 485508.
Geisler, T., Schaltegger, U. and Tomaschek, F. (2007) Re-equilibration of zircon in aqueous fluids and melts. Elements, 3, 4350.
Goldoff, B., Webster, J.D. and Harlov, D.E. (2012) Characterization of fluor-chlorapatites by electron probe microanalysis with a focus on time-dependent intensity variation of halogens. American Mineralogist, 97, 11031115.
Gonzalez del Tanago, J., La Iglesia, A. and Delgado, A. (2006) Kamphaugite-(Y) from La Cabrera massif, Spain: a low-temperature hydrothermal Y-REE carbonate. Mineralogical Magazine, 70, 397404.
Griffin, W.L., Nilssen, B. and Jensen, B.B. (1979) Britholite-(Y) and its alteration: Reiarsdal, Vest-Agder, south Norway. Norsk Geologisk Tidsskrifi, 58, 265271.
Hillebrand, W.F. (1902) The composition of yttrialite with a criticism of the formula assigned to thalenite. American Journal of Science, 4* series, 13, 145152.
Hjelmqvist, S. and Lundqvist, G. (1953) Beskrivning till kartbladet Sater. Sveriges Geologiska Undersokning serie Aa, 194, 1-97.
Irber, W. (1999) The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites. Geochimica et Cosmochimica Ada, 63, 489508.
Ito, J. and Johnson, H. (1968) Synthesis and study of yttrialite. American Mineralogist, 53, 19401952.
Jang, K.H., IChaidukov, N.M., Tuyen, V.P., Kim, S.I., Yu, Y.M. and Seo, H.J. (2012) Luminescence properties and crystallographic sites for Eu + ions in fiuorthalenite Y3Si3OioF. Journal of Alloys and Compounds, 536, 4751.
Jonsson, E., Hogdahl, K., Majka, J. and Murashko, M. (2014) Te-Cu-rich sudburyite—the first platinum-group-element mineral from the selenide mineralization at Skrikerum, Sweden. Neues Jahrbuch fur Mineralogie Abhandlungen, 191, 137144.
Kornev, A.N., Batalieva, N.G., Maksimov, B.A., Ilyukhin, V.V. and Belov, N.V. (1972) Crystal structure of thalenite, Y3(Si3O10)(OH). Doklady Akademii Nauk SSSR, 202, 13241327.
Kozireva, I.V., Svecova, I.V. and Popova, T.N. (2004) Occurence of Nd thalenite in Pripolar Ural. Vestnik, 6, 23.
Kxistiansen, R. (1993) Thalenitt-liknende mineraler fra Askagen, Sverige. Stein, 1, 7-8, 5960.
London, D. (2008) Pegmatites. Canadian Mineralogist Special Publication, 10, 1347.
Mason, B. and Roberts, C.N. (1949) Minerals of the Osterby pegmatite, Dalarna, Sweden. Geologiska Foreningens i Stockholm Forhandlingar, 71, 537544.
McDonough, W.F. and Sun, S. (1995) The composition of the Earth. Chemical Geology, 120, 223253.
Merlet, C. (1994) An accurate computer correction program for quantitative electron probe microana-lysis. Microchimica Ada, 114/115, 363—376.
Minakawa, T, Noto, S. and Morioka, H. (1999) Rare earth minerals in Shikoku, with special reference to the occurrence of rare earth minerals in pegmatites in Ryoke and Hiroshima granites. Memoirs of the Faculty of Science, Ehime University, 5, 132.
Monecke, T., Kempe, U., Monecke, J., Sala, M. and Wolf, D. (2002) Tetrad effect in rare earth element distribution patterns: a method of quantification with application to rock and mineral samples from granite-related rare metal deposits. Geochimica et Cosmochimica Ada, 66, 11851196.
Miiller-Bunz, H. and Schleid, T. (2000) Synthesis and constitution of fluorothalenite-type (Y3F [Si3Oi0]) fluoride catena-trisilicates M3F [Si3O10] with the lanthanides (M= Dy, Ho, Er). Zeitschrift fur anorganische und allgemeine Chemie, 626, 845852.
Nagashima, K and Kato, A. (1966) Chemical studies of minerals containing rarer elements from the far east district. LX. Thalenite from Suishoyama, Kawamata-machi, Fukushima Prefecture, Japan. Bulletin of the Chemical Society of Japan, 39, 925928.
Nordenskiold, A.E. (1884) Motet den 7 November 1884. Frih. Nordenskiold redogjorde for nagra vigtigare mineralfynd under fornutne sommar. Geologiska Foreningens i Stockholm Forhandlingar, 7, 301302.
Ottolini, L., Camara, F. and Bigi, S. (2000) An investigation of matrix effects in the analysis of fluorine in humite-group minerals by EMPA, SIMS, and SREF. American Mineralogist, 85, 89102.
Palatinus, L. (2013) The charge nipping algorithm in crystallography. Ada Crystallographica, B69, 1—16.
Palatinus, L. and Chapuis, G. (2007) Superfiip-a computer program for the solution of crystal structures by charge nipping in arbitrary dimensions. Journal of Applied Crystallography, 40, 451456.
Peretyazhko, I.S. and Savina, E.A. (2010) Tetrad effects in the rare earth element patterns of granitoid rocks as an indicator of fluoride-silicate liquid immisci-bility in magmatic systems. Journal of Petrology, 18, 514543.
Petersson, W. (1890) Studier ofver gadolinit. Geologiska Foreningens i Stockholm Forhandlingar, 12, 275347.
Petficek, V., Dusek, M. and Palatinus, L. (2006) JANA2006. The Crystallographic Computing System. Institute of Physics, Praha, Czech Republic.
Petficek, V., Dusek, M. and Palatinus, L. (2014) Crystallographic Computing System Jana 2006: general features. Zeitschrift fur Kristallographie, 229, 345352.
Putnis, A. and Putnis, C.V. (2007). The mechanism of reequilibration of solids in the presence of a fluid phase. Journal of Solid State Chemistry, 180, 17831786.
Raade, G. and ICristiansen, R. (2009). Fluorthalenite-(Y) from Hundholmen, Tysfjord, north Norway. Norsk Bergverksmuseum skrift, 41, 2124.
Raudsepp, M. (1995) Recent advances in the electron-probe micro-analysis of minerals for the light elements. The Canadian Mineralogist, 33, 203218.
Schetelig, J. (1931) Remarks on thalenite from some new occurrences in southern Norway. Norsk Geologisk Tidsskrift, 12, 508519.
Schleid, T. and Muller-Bunz, H. (1998). Einkristalle von Y3F [Si3O10] im Thalenit-Typ. Zeitschrift fur anorganische und allgemeine Chemie, 624, 10821084.
Sjogren, H. (1906) Thalenit fran Askagens kvartsbrott i Varmland. Geologiska Foreningens i Stockholm Forhandlingar, 28, 93101.
Skoda, R., Cempirek, J., Filip, J., Novak, M., Veselovsky, F. and Ctvrtlik, R. (2012) Allanite-(Nd), CaNdAl2Fe2+(SiO4)(Si2O7)O(OH), a new mineral from Askagen, Sweden. American Mineralogist, 97, 983988.
Stalhos, G (1991) Beskrivning till berggrundskartorna Osthammar NV, NO, SV, SO. Sveriges Geologiska Undersokning serie Af, 161, 166, 169 and 172. Swedish Geological Survey, Uppsala, Sweden, 249 pp.
Stepanov, A.V., Bekenova, G.K., Levin, V.L., Sokolova, E., Hawthorne, F.C. and DobrovoFskaya, E.A. (2012) Tarbagataite, (K,D)2(Ca,Na)(Fe2+,Mn)7Ti2(Si4O12)2O2(OH)4(OH,F), a new astrophyllite-group mineral species from the Verkhnee Espe deposit, Akjailyautas mountains, Kazakhstan: Description and crystal structure. The Canadian Mineralogist, 50, 159168.
Stephens, M.B., Ripa, M., Lundstrom, I., Persson, L., Bergman, T., AM, M., Wahlgren, C.-H., Persson, P.-O. and Wickstrom, L. (2009) Synthesis of the bedrock geology in the Bergslagen region, Fennoscadian Shield, south-central Sweden. Sveriges Geologiska Undersokning serie Ba, 58, 1259.
Stromer, JrJ.C., Pierson, MX. and Tacker, R.C. (1993) Variation of F and Cl X-ray intensity due to anisotropic diffusion in apatite. American Mineralogist, 78, 641648.
Stromberg, A. (1996) Berggrundskartan 12F Ludvika NO. Sveriges Geologiska Undersokning serie Af, 174 (bedrock map). Swedish Geological Survey, Uppsala, Sweden.
Sundblad, K., Stein, H., Markey, R.J., Morgan, J.W. and Bergman, T. (1996) Re-Os age and geochemistry of highly evolved granites associated with Mo and W ore deposits in Bergslagen, Sweden. 7th International Symposium on Rapakivi Granites and Related Rocks. Abstract volume, pp. 73—74.
Sundius, N. (1952). Kvarts, faltspat och glimmer samt forekomster darav i Sverige. Sveriges Geologiska Undersokning serie C, 520, 1231.
Veksler, I.V., Dorfman, A.M., Kamenetsky, M., Dulski, P. and Dingwell, D.B. (2005) Partitioning of lanthanides and Y between immiscible silicate and fluoride melts, fluorite and cryolite and the origin of the lanthanide tetrad effect in igneous rocks. Geochimica et Cosmochimica Acta, 69, 28472868.
Voloshin, A.V. and Pakhomovskii, Y.A. (1997) Fluorthalenite-(Y)—a new mineral from the amazonitic randpegmatites of the Kola Peninsula. Doklady Akademii Nauk, 354, 7778.
Vorma, A., Ojanpera, P., Hoffren, V., Siivola, J. and Lofgren, A. (1966) On the rare earth minerals from the Pyoronmaa pegmatite in Kangasala. Comptes Rendu de la Societe Geologique de Finlande, 38, 241274.
Weibull, M. (1886) Om fluocerit fran Osterby i Dalarne. Geologiska Foreningens i Stockholm Fbrhandlingar, 8, 496500.
Wu, C.-Z, Liu, S.-H., Gu, L.-X., Zhang, Z.-Z. and Lei, R.-X. (2011) Formation mechanism of the lanthanide tetrad effect for a topaz-and amazonite-bearing leucogranite pluton in eastern Xinjiang, NW China. journal of Asian Earth Sciences, 42, 903916.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed