Skip to main content Accessibility help

The rates of dissolution of olivine, plagioclase, and quartz in a basalt melt

  • Colin H. Donaldson (a1)


The dissolution rates of spheres of two magnesian olivines, two plagioclases, and quartz in tholeiitic basalt have been determined at three super-liquidus temperatures and one-atmosphere pressure. There are considerable differences in the rates among the minerals, e.g. at 1210°, 12° above the liquidus temperature of the basalt, labradorite dissolves at 86 µm/h. and the magnesian olivines at 9 and 14 µm/h. The rates are not time dependent and this, coupled with the existence of concentration gradients in the composition of quenched melt adjacent to partially dissolved crystals, indicates that the dissolution rates are dictated by a combination of diffusion and convection of components to and from the crystal-liquid interface. Values for the activation enthalpy of dissolution are small for quartz and plagioclase (40–50 kcal mol−1) but large for olivine 73–118 kcal mol−1). Dissolution of plagioclase in rock melts seems to be a much more rapid process than crystal growth, whereas olivines apparently dissolve and grow at similar rates. Crystal dissolution is sufficiently slow that ascending, crystal-bearing magma may become superheated and yet fail to dissolve the crystal fraction before quenching; this may be the reason that olivine phenocrysts are often rounded.



Hide All
Berner, R. A. (1980) Kinetics of Weathering and Diagenesis. In Kinetics of Geochemical Processes (Lasaga, A. C. and Kirkpatrick, R. J., eds.), 111-34. Mineral. Soc. Am.
Bond, W. L. (1951) Rev. Sci. Instrum, 22, 344-5.
Bowen, N. L. (1913) Am. J. Sci. 35, 577-99.
Bowen, N. L. and Schairer, J. F. (1935) Am. d. Sci. 26, 151-217.
Burton, J. A., and Slichter, W. P. (1958) The distribution of solute elements: steady-state growth. In Transistor Technolooy, 1 (Bridgers, H. E., ed.), 71106. Van Nostrand, New York.
Carruthers, J. A. (1976) J. Crystal Growth, 32, 1326.
Chalmers, B. (1964) Principles of Solidification. 319 pp. Wiley and Sons, New York.
Donaldson, C. H. (1975) Lithos, 69, 163-74.
Donaldson, C. H. (1979a) Contrib. Mineral. Petrol. 69, 21-32.
Donaldson, C. H. (1979b) Mineral. Ma9. 43, 115-19.
Donaldson, C. H., Williams, R. J., and Lofgren, G. E. (1975) Am. Mineral. 60, 324-6.
Dowty, E. (1980) Crystal Growth and Nucleation Theory and the Numerical Simulation of Igneous Crystallization. In Physics ofMagmatic Processes (Hargraves, R. B., ed.), 419-85. Princeton Univ. Press.
Elwell, D., and Scheel, H. J. (1975) Crystal Growth from High-Temperature Solutions. Academic Press.
Finch, R. H., and Anderson, C. A. (1930) Univ. Calif. Dept. Geol. Sci. Bull. 19, 245-73.
Harrison, T. M., and Watson, E. B. (1983) Contrib. Mineral. Petrol. 84, 6672.
Henderson, P. (1982) Inorganic Geochemistry. 353 pp. Pergamon Press, Oxford.
Hofman, A. W. (1980) Diffusion in natural silicate melt: a critical review. In Physics of Magmatic Processes (Hargraves, R. B., ed.), 385417. Princeton Univ. Press.
Huppert, H. E., and Sparks, R. S. J. (1984) Ann. Rev. Earth Planet. Sci. 12, 11-37.
Kirkpatrick, R. J. (1975) Am. Mineral. 60, 798814.
Kirkpatrick, R. J. (1977) Bull. Geol. Soc. Am. 88, 7884.
Kirkpatrick, R. J. (1980) Kinetics of Crystallization of Igneous Rocks. In Kinetics of Geochemical Processes (Lasaga, A. C. andKirkpatrick, R. J., eds.), 321-95. Mineral. Soc. Am.
Kuo, L-C., and Kirkpatrick, R. J. (1983) EOS (Trans. Am. Geophys. Union), 64, 349.
Kutolin, V. A., and Agafanov, L. V. (1978) Geol. Geofiz. (Acad. Nauk USSR, Novosibirsk), 5, 3-13.
Lacroix, A. (1893) Les Enclaves des Roches Volcaniques. Masson, Paris.
Larsen, E. S., and Irving, J. (1938) Am. Mineral. 23, 227-57.
Lofgren, G. E. (1983) J. Petrol. 24, 229-55.
Moorbath, S., Thompson, R. N., and Oxburgh, E. R. (1984) Phil. Trans. R. Soc. A310, 437780.
Roeder, P. L., and Emslie, R. F. (1970) Contrib. Mineral. Petrol. 29, 275-89.
Sato, H. (1974) Ibid. 50, 49-64.
Sato, K., Kahima, K., and Sunagawa, I. (1981) J. Jap. Assoc. Petrols. Econ. Geols. 76, 294307.
Sato, M. (1978) Geophys. Res. Letts. 5, 447-9.
Scarfe, C. M., Takahashi, E., and Yoder, H. S. (1980) Carnegie Inst. Wash. Yearb. 79, 290-6.
Shaw, H. R. (1969) J. Petrol. 10, 510-35.
Shaw, H. R. (1972) Am. J. Sci. 272, 870-93.
Sparks, R. S. J., Huppert, H. E., and Turner, J. S. (1984) Phil. Trans. R. Soc. A310, 511-34.
Thornber, C. R., and Huebner, J. S. (1982). EOS (Trans. Am. Geophys. Union), 63, 452-3.
Tritton, D. J. (1977) Physical Fluid Dynamics. 362 pp. Van Nostrand, New York.
Turner, J. S. (1973) Buoyancy Effects in Fluids. 367 pp. Cambridge Univ. Press.
Watson, E. B. (1982) Contrib. Mineral. Petrol. 80, 7387.
Wilcox, R. E. (1944) Bull. Geol. Soc. Amer. 55, 1047-80.


The rates of dissolution of olivine, plagioclase, and quartz in a basalt melt

  • Colin H. Donaldson (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed